KSBi-BIML 2023

Bioinformatics & Machine Learning(BIML) Workshop for Life Scientists, Data Scientists, and Bioinformatians

생물정보학&머신러닝 워크샵(온라인)

S

Pharmacogenomics in drug discovery and development

<mark>남호정</mark>_GIST

본 강의 자료는 한국생명정보학회가 주관하는 BIML 2023 워크샵 온라인 수업을 목적으로 제작된 것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다.

이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없으며 만약 이러한 사항을 위반할 경우 발생하는 **모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고**합니다.

KSBi-BIML 2023

Bioinformatics & Machine Learning (BIML) Workshop for Life Scientists, Data Scientists, and Bioinformatians

안녕하십니까?

한국생명정보학회가 개최하는 동계 교육 워크샵인 BIML-2023에 여러분을 초대합니다. 생명정보학 분야의 연구자들에게 최신 동향의 데이터 분석기술을 이론과 실습을 겸비해 전달하고자 도입한 전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하여 올해로 9차를 맞이하게 되었습니다. 지난 2년간은 심각한 코로나 대유행으로 인해 아쉽게도 모든 강의가 온라인으로 진행되어 현장 강의에서만 가능한 강의자와 수강생 사이에 다양한 소통의 기회가 없음에 대한 아쉬움이 있었 습니다. 다행히도 최근 사회적 거리두기 완화로 현장 강의가 가능해져 올해는 현장 강의를 재개 함으로써 온라인과 현장 강의의 장점을 모두 갖춘 프로그램을 구성할 수 있게 되었습니다.

BIML 워크샵은 전통적으로 크게 인공지능과 생명정보분석 두 개의 분야로 구성되었습니다. 올해 AI 분야에서는 최근 생명정보 분석에서도 응용이 확대되고 있는 다양한 심층학습(Deep learning) 기법들에 대한 현장 강의가 진행될 예정이며, 관련하여 심층학습을 이용한 단백질구조예측, 유전체 분석, 신약개발에 대한 이론과 실습 강의가 함께 제공될 예정입니다. 또한 싱글셀오믹스 분석과 메타유전체분석 현장 강의는 많은 연구자의 연구 수월성 확보에 큰 도움을 줄 것으로 기대하고 있습니다. 이외에 다양한 생명정보학 분야에 대하여 30개 이상의 온라인 강좌가 개설되어 제공되며 온라인 강의의 한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 특히 BIML은 각 분야 국내 최고 전문가들의 강의로 구성되어 해당 분야의 기초부터 최신 연구 동향까지 포함하는 수준 높은 내용의 강의가 될 것입니다.

이번 BIML-2023을 준비하기까지 너무나 많은 수고를 해주신 BIML-2023 운영위원회의 남진우, 우현구, 백대현, 정성원, 정인경, 장혜식, 박종은 교수님과 KOBIC 이병욱 박사님께 커다란 감사를 드립니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 현장 강의와 온라인 강의를 준비하시는데 노고를 아끼지 않으신 모든 연사분께 깊은 감사를 드립니다.

2023년 2월

한국생명정보학회장 이 인 석

Pharmacogenomics in drug discovery and development

약물유전체학이란(pharmacogenomics) 유전체(genome) 수준에서 염기서열의 차이 또는 유전자 발 현 차이를 분석하여 개개인이 갖는 약물 반응의 차이를 규명하는 연구분야이다. 본 수업에서는 이 러한 개인별 약물 반응성을 고려한 약물 개발 과정에 대하여 알아보고 또한 개인별 유전자에 따 른 약물 반응을 연구/예측하는데 필요한 생명정보학적 접근 방식을 알아본다. 구체적으로는 약물 유전체학에 대한 기본 개념을 이해하고, 연구에 필요한 다양한 데이터베이스와 기본적인 생명정보 학적 알고리즘들에 대해서 다룬다.

강의는 다음의 내용을 포함한다:

- Pharmacogenomics 기본 개념
- Drug discovery and development 기본 개념
- Protein representation features
- Molecular representation features
- 개인별 유전자 정보를 이용한 다양한 약물 개발 연구 소개
- * 교육생준비물:
 - 강의 동영상 플레이가 가능한 컴퓨터
- * 강의 난이도: 중급
- * 강의: 남호정 교수 (광주과학기술원 전기전자컴퓨터공학부)

Curriculum Vitae

Speaker Name: Hojung Nam, Ph.D.

Name	Hojung Nam
Title	Associate Professor
Affiliation	Gwangju Institute of Science and Technology (GIST)
► Contact Inform	ation
Address	123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005,
	Republic of Korea
Email	hjnam@gist.ac.kr
Phone Number	062-715-2641

Research Interest

Bioinformatics, Systems Biology, Cheminformatics, Machine learning

Dersonal Info

Educational Experience

2001	B.S. in Computer Science, Sogang Univ., Seoul, Korea.
2003	M.S. in Computer Science, KAIST, Daejeon, Korea.
2009	Ph.D. in Bio and Brain Engineering, KAIST, Daejeon, Korea.

Professional Experience

2009-2013	Postdoctoral Researcher, Bioengineering, University of California, San Diego, CA USA
2013-2018	Assistant Professor, Gwangju Institute of Science and Technology (GIST)
2018-	Associate Professor, Gwangju Institute of Science and Technology (GIST)

Selected Publications (5 maximum)

- Hyunho Kim, Eunyoung Kim, Ingoo Lee, Bongsung Bae, Minsu Park, Hojung Nam*, "Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-Driven and Machine Learning Approaches", Biotechnology and Bioprocess Engineering, volume 25, pages895–930(2020).
- Hyunho Kim, Hojung Nam*, "hERG-Att: Self-Attention-Based Deep Neural Network for Predicting hERG Blockers", Computational Biology and Chemistry, Available online 19 May 2020, 107286.
- 3. Soobok Joe , Hojung Nam*, "Prediction model construction of stem cell pluripotency using CpG and non-CpG DNA methylation markers", BMC Bioinformatics, 2020 21:175.
- 4. Heeyeon Choi, Soobok Joe, Hojung Nam*, "Development of Tissue-Specific Age Predictors Using DNA Methylation Data", Genes 2019, 10(11), 888.
- Ingoo Lee, Jongsoo Keum, Hojung Nam*, "DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences", PLoS Computational Biology 15(6): e1007129. https://doi.org/10.1371/journal.pcbi.1007129

KSBi-BIML

Pharmacogenomics in drug discovery and development

Hojung Nam, Ph.D. Associate Professor School of Electrical Engineering and Computer Science (EECS) Gwangju Institute of Science and Technology (GIST) Contact: hjnam@gist.ac.kr

SBi 한국생명정보학회

Contents

- PART1
 - Introduction to pharmacogenomics
 - Drug discovery and development
 - Key data sources
 - Representations of proteins, chemicals

PART2

- Studies related to pharmacogenomics based on machine learning

- PART1
 - Introduction to pharmacogenomics
 - Drug discovery and development
 - Key data sources
 - Representations of proteins, chemicals
- PART2
 - Studies related to pharmacogenomics based on machine learning

INTRODUCTION TO PHARMACOGENOMICS

SBi 한국생명정보학회

Pharmacogenomic

- The term pharmacogenetics was coined in the 1950s and captures the idea that large effect size DNA variants contribute importantly to variable drug actions in an individual (single gene-drug).
- The term pharmacogenomics is now used by many to describe the idea that multiple variants across the genome that can differ across populations affect drug response. The International Conference on Harmonisation, a worldwide consortium of regulatory agencies, has defined pharmacogenomics as the study of variations of DNA and RNA characteristics as related to drug response.

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.

- PART1
 - Introduction to pharmacogenomics
 - Drug discovery and development
 - Key data sources
 - Representations of proteins, chemicals
- PART2
 - Studies related to pharmacogenomics based on machine learning

KEY DATA RESOURCES

SBI 한국생명정보학회

SNP(단일염기다형성)

Single-nucleotide polymorphism

From Wikipedia, the free encyclopedia

This article's **use of external links may not follow Wikipedia's policies or guidelines**. Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references. (October 2012) (Learn how and when to remove this template message)

A single-nucleotide polymorphism, often abbreviated to SNP (/snip/; plural /snips/), is a variation in a single nucleotide that occurs at a specific position in the genome, where each variation is present to some appreciable degree within a population (e.g. > 1%),^[1]

For example, at a specific base position in the human genome, the C nucleotide may appear in most individuals, but in a minority of individuals, the position is occupied by an A. This means that there is a SNP at this specific position, and the two possible nucleotide variations – C or A – are said to be alleles for this position.

SNPs underlie differences in our susceptibility to disease; a wide range of human diseases, e.g. sickle-cell anemia, β -thalassemia and cystic fibrosis result from SNPs.^{[2][3][4]} The severity of illness and the way the body responds to treatments are also manifestations of genetic variations. For example, a single-base mutation in the APOE (apolipoprotein E) gene is associated with a lower risk for Alzheimer's disease.^[5]

A single-nucleotide variant (SNV) is a variation in a single nucleotide without any limitations of frequency and may arise in somatic cells. A somatic single-nucleotide variation (e.g., caused by cancer) may also be called a single-nucleotide alteration.

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

The upper DNA molecule differs from the lower DNA molecule at a single base-pair location (a C/A polymorphism)

NCBI dbSNP

ENCBI A	II Databases 🗸			Search
National Center for Biotechnology Information				Charles
NCBI Home	Welcome to NCBI			Popular Resources
Resource List (A-Z)	The National Center for Biotechnol	loov Information advances science an	d health by providing access to	PubMed
All Resources	biomedical and genomic information	an.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Bookshelf
Chemicals & Bloassays	About the NCBI Mission Orga	nization NCBI News & Blog		PubMed Central
Data & Software				BLAST
DNA & RNA	Submit	Download	Learn	Nucleotide
Domains & Structures	Deposit data or manuscripts	Transfer NCBI data to your	Find help documents, attend a	Genome
Genes & Expression	into NCBI databases	computer	class or watch a tutorial	SNP
Genetics & Medicine		-		Gene
Genomes & Maps				Protein
Homology	- T			PubChem
Literature				
Proteins				NCBI News & Blog
Seguence Analysis	Davalan	Analyza	Passarah	Allele Frequency Appreciator (ALFA)
Taxonomy	Lise NORLARIS and and	Marille as NGBI test ferrors	Further MCBI assessed and	Release 2 is available!
Training & Tutorials	libraries to build applications	data analysis task	collaborative projects	We are excited to announce the NCBI
Variation				Allala Francianov Animonator (ALFA)
		3-8-6	5	NCBI on YouTube: RAPT and BLAST+ on the Cloud, SARS-CoV-2 genome data in Datasets
				15 Jan 2921 It's time we do another rounduo of what's
				RefSeq release 204 is now available
				14 Jan 2021 RefSeq release 204 is now available online, from the FTP oite and through NCRI's Entrez programming utilities. F-
				More
-				
You are here: NCBI > National O	Center for Biotechnology Information			Support Cent
CETTING ETHOTEO	RESOURCES	DODULAR	FEATURED	NCBI INFORMATION

	The Human Cytochrome P450 (<i>CYP</i>) Allele Nomenclature Database
	Allele nomenclature for Cytochrome P450 enzymes
	New List: CYP allele frequencies from 56,945 unrelated individuals of five major human populations
	Inclusion criteria - New criteria regarding variants identified by NGS
	iRAMP, calculator of contribution of rare variants.
	Cytochrome P450 Oxidoreductase: <u>POR</u>
	CYP1 family: <u>CYP1A1;</u> <u>CYP1A2;</u> <u>CYP1B1</u>
	CYP2 family: <u>CYP2A6; CYP2A13; CYP2B6; CYP2C8; CYP2C9; CYP2C19;</u> <u>CYP2D6</u> ; <u>CYP2E1; CYP2F1; CYP2J2; CYP2R1</u> ; <u>CYP2S1; CYP2W1</u>
	CYP3 family: <u>CYP3A4;</u> <u>CYP3A5;</u> <u>CYP3A7;</u> <u>CYP3A43</u>
https://www.pharmyar.org/htdpss/ar	CYP4 family: <u>CYP4A11;</u> <u>CYP4A22;</u> <u>CYP4B1;</u> <u>CYP4F2</u>
chive/index_original.htm	CYP>4 families: <u>CYP5A1; CYP8A1; CYP19A1; CYP21A2; CYP26A1</u>
	SNP information on CYP17A1 can be found <u>here</u>

SBI 한국생명정보학회 Korean Society for Bioinformatics

Г

A registration of the second s second second secon second second sec	
pharmvar.org/htdocs/archive/index_original.htm	x \$\$ 💑 🕈 🛛 🖓 0 🗢 🖪 📕 🗣 🛛 🐧 🛥 🕿 🔺 🕸 🕕
The Human Cytochrome P4	50 (CYP)
Allele Nomenclature Databa	ise
Allele nomenclature for Cytochrome P450 enzyme	\$
New List: CYP allele frequencies from 56,945 unrelated in of five major human populations	dividuals
Inclusion criteria - New criteria regarding variants identified b	y NGS
iP AMD calculator of contribution of rare variants	
Cytochrome P450 Oxidoreductase: POR	
CYP1 family:	
CYPIAI: CYPIA2; CYPIBI	
CYP2 family: CYP2A6: CYP2A13: CYP2B6: CYP2C8: CYP2C9: CYP2C	19-
CYP2D6; CYP2E1; CYP2F1; CYP2J2; CYP2R1; CYP2S1;	<u>CYP2W1</u>
CYP3 family: CYP3A4; CYP3A5; CYP3A7; CYP3A43	
CYP4 family:	
CYP4A11; CYP4A22; CYP4B1; CYP4F2	

	Table 2. Resources for	pan-cancer genom	ics profiles a	nd tools			
	Resource	Data type	Profiling platform	Sample size	Description	Link	References
Resources for pan-cancer genomics profiles and tools	Adult cancers TCGA (The Cancer Genome Atlas)	Clin, CNA, GEX, Methyl, miEX, SNV	Microarray, NGS	~11 300	Mostly primary tumors of 33 cancers	Individual cancers: https://portal.gdc. cancer.gov/ Merged pan-cancer data: https://gdc. cancer.gov/ node/90S/ Also downloadable by an k/Bioconductor package TrCabioline [41]	[150]
	MET500	CNA, SNV	NGS	500	Metastatic tumors of 30 cancers	https://met500.path. med.umich.edu/	[43]
	TARGET (Therapeutically Applicable Research to Generate Effective Treatments)	Clin, GEX, miEX, SNV	NGS	~3200 (according to the GDC Data Portal accessed in May 2018)	6 pediatric cancers (according to the GDC Data Portal accessed in May 2018)	https://portal.gdc. cancer.gov/ Also downloaded by an R/Bioconductor package	[44]
	PedPanCan (Pediatric Pan-Cancer study) Cancer cell lines	SNV	NGS	961	24 pediatric cancers	http://www. pedpancan.com	[45]
	CCLE (Cancer Cell Line Encyclopedia)	CNA, GEX, RPPA, SNV	Microarray, NGS	~1500		https://portals. broadinstitute.org/ ccle Also accessible through the Cancer Dependency Map (DepMap): https:// depmap.org/portal/	[15, 151]
	Curations ICGC (International Cancer Genome Consortium) COSMIC (Catalogue of Somatic Mutations in	Clin, CNA, GEX, Methyl, miEX, SNV CNA, SNV	Curation Curation	~24 000	Curation of 80+ international cancer projects, including TCGA and TARGET Summarization of cancer-related mutations across 32 000+ tumors and	http://icgc.org/ https://cancer. sanger.ac.uk/ cosmic	[46] [48]
	Cancer) Pan-cancer data visua	lization	Courtier.		25 000 papers	L. 1	[ee]
	Gene signatures and b	2D maps niological pathways	curation		etc.	ucsc.edu/	[4/]
	MSigDB (Molecular Signatures Database	Genes sets	Curation	~17 800 gene sets	Genes sets of cytobands, curations, motifs, computation, Gene Ontologies, oncogenic signatures and immunology	http://software. broadinstitute.org/ gsea/msigdb/index. jsp	[52-54]
	Pathway Commons	Biological pathways	Curation	4000+ pathways	Collection of biological pathways from 20+ databases, including KEGG and Reactome	https://www. pathwaycommons. org/	[152]
Drief Disinforme 2020 Des 1.21(C) 2000	NDEx (Network Data Exchange)	Biological networks	Curation		Interactive database that allows users to query, visualize, upload, share and distribute biological networks	www.ndexbio.org/	[153]
Brief Bioinform . 2020 Dec 1;21(6):2066-	Normal tissues GTEx (Genotype-Tissue)	GEX	NGS	~11 700	Expression profiles of 53	https://gtexportal.	[154, 155]
2083. doi: 10.1093/bib/bbz144.	Expression)				~1000 individuals that can be used as normal controls for	orgy nonney	
응을 SBi 한국생명정보학회 Korean Society for Bioleformatics	Clin, clinical data; CNA, co phase protein array; SNV,	py number alteration; (single nucleotide varia	GEX, gene expre nt.	ssion; Methyl, methyla	cancer studies tion; miEX, miRNA expression; NCS, n	ext-generation sequencing	; RPPA, reverse

(©) PubChem x +			ANNOUNCE FOR STATE AND A D		- 🗆 X
← → C ☆ ■ pubchem.ncbi.nlm.nih.gov	e n	□ ☆	8 1 • O O O		å 🖾 🔺 🕕 i
PubChem About	Blog Submit Contact				
	Explore Quickly find chemical in Browse <u>COVID-15</u> Try aspirin EGFR C9H804 S7- Use Entrez © COVID-15 Try aspirin EGFR C9H804 S7- Draw Structure Upload ID	e Chem formation from author e data available in PubChem 27-2 c1=cc=cqc=cqc=o pourds @ Subcrance Class Browse Data	itative sources × Inchi=15/C3H6O/c1-3(2)4/h1- Bookuaya Periodic Table	2H3	
중을 SBi 한국생명정보학회 Korean Society for Bioinformatic	https://pubchem	.ncbi.nlm.nih. _{	gov/		25
	Dr	ugBanl	K		

	WHAT ARE YOU LOOKING FOR?				
	Tylenol				Q
	Orugs 😛 Targets 🕜 Pathwa	ys Indications			
	NIZ				
JRUGBA					
DrugBank is a	a pharmaceutical knowledge	e <mark>base that is enabl</mark> i	ng		
major advanc	ces across the data-driven m	nedicine industry.			
The knowledge b	ase consists of proprietary authored content de	escribing clinical level information	n about		
drugs such as sid structures and wi	le effects and drug interactions, as well as mole hat proteins a drug interacts with. DrugBank of	cular level data such as chemical fers a suite of products powered	by the		
DrugBank Platfor	m and has customers located around the world	crossing multiple industries inclu t and regulatory agencies. DrugBa	uding ank also		
provides DrugBar	nk Online as a free-to-access resource for acade	mic research and is used by millio	ons of		
pharmacists, phar	rmacologists, health professionals and pharmac	ceutical researchers every year.			
DrugBank for Com	nmercial Use →) (Cite DrugBank ⊕) (About E	DrugBank >			

	Genom Cancer	ics of D)rug Ser	ansitivity ir		wellcome San institute	ger er	SSACHUSETTS SERAL HOSPITAL NCER CENTE
e Compounds	Features	Cell Lines	About New	vs Downloads	Documentation	FAQ		Login V
Genoi We have chai On thi	racterised 1000 hu is website, you will Search by dr e.g. Docetaxel, RP-	Drug uman cancer c find drug resp ug, gene or c 56976, BRAF, COLO	Sensit	ened them with 100s enomic markers of s	Cancer of compounds.		Release 8.3 (June 2) The functionality of the Sensitivity in Cancer d been enhanced with tw visualisations. The Cor Volcano Plot overlays a pan-cancer association significant biomarker a context-specific ANOV compound plots the cor response results (IC50 different drugs across	D20) e Genomics of Drug atabase has now vo new data nbined Analyses all tissue specific and is to visualize issociations across all a analyses. Compare irrelation of dose or AUC) between the cell line set.
			_			_	GDSC1 Age	GDSC2
							from 2010 to 2015	✓ NEW

- PART1
 - Introduction to pharmacogenomics
 - Drug discovery and development
 - Key data sources
 - Representations of proteins, chemicals
- PART2
 - Studies related to pharmacogenomics based on machine learning

PROTEIN REPRESENTATIONS

SB 한국생명정보학회

- Composition, Transition and Distribution (CTD) 147D
- Protein embedding

Dipeptide (400D) / Tripeptide (8000D) Composition

##	AA	RA	NA	DA	CA	EA			
##	0.003565062	0.003565062	0.00000000	0.007130125	0.003565062	0.003565062			
##	QA	GA	HA	IA	LA	KA			
##	0.007130125	0.007130125	0.001782531	0.003565062	0.001782531	0.001782531			
##	MA	FA	PA	SA	ТА	WA			
##	0.00000000	0.005347594	0.003565062	0.007130125	0.003565062	0.00000000			
##	YA	VA	AR	RR	NR	DR			
##	0.00000000	0.00000000	0.003565062	0.007130125	0.005347594	0.001782531			
##	CR	ER	QR	GR	HR	IR			
##	0.005347594	0.005347594	0.000000000	0.007130125	0.001782531	0.003565062			
		÷	## AA	ка ка	AA NA/	A DAA	CAA	EAA	
		;	## 0.0000000	0.0000000	0.00000000	0.000000000	0.00000000	0.000000000	
			## 04	A 64	ла на	Δ ΤΔΔ	1 44	κΔΔ	
			"" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 0 0000000			0.00000000	0.00000000	
			## 0.001/03/1				0.000000000	0.00000000	
		1	## ™₽	A FA		A SAA	TAA	WAA	
		÷	## 0.0000000	0.00000000	0.00000000	0 0.001785714	0.00000000	0.000000000	
		ŧ	## YA	A VA	AA AR	A RRA	NRA	DRA	
		ŧ	## 0.0000000	0.00000000	0.00000000	0.000000000	0.00000000	0.00000000	
		÷	## CR	A EF	A QR/	A GRA	HRA	IRA	
		ŧ	## 0.0000000	0.0000000	0.00000000	0 0.001785714	0.00000000	0.00000000	
		ŧ	## LR		A MR	A FRA	PRA	SRA	
		+	## 0.0000000	0.0000000	0.00000000	0.000000000	0.00000000	0.00000000	
2	CRi 한국생명	정보학회							
Q.	Korean Society	for Bioinformatics							

yBioMed 1 documentation »	previous next m
Getting Started with PyBioMed	
This document is intended to provide an overview of how one can use the PyBioMed functionality from Python. If you find mistakes, or have suggestions for mprovements, please either fix them yourselves in the source document (the .py file) or send them to the mailing list. <u>oriental-cds@163.com</u> and <u>jadsby@163.com</u> .	TER
installing the PyBioMed package	PyB
YBioMed has been successfully tested on Linux and Windows systems. The user could download the PyBioMed package via: https://raw.githubusercontent.com/gadsbyfly/PyBioMed/master/PyBioMed/download/PyBioMed-1.0.zip . The installation process of PyBioMed is very easy:	****************
Note	Catting Started
You first need to install RDKit and pybel successfully.	 Installing the
Dn Windows:	package Getting mole
1): download the PyBioMed-1.0.zip	structure
2): extract the PyBioMed-1.0.zip file	 Reading i Getting p
3): open cmd.exe and change dictionary to PyBioMed-1.0 (write the command "cd PyBioMed-1.0" in cmd shell)	 Reading (sequence)
4): write the command "python setup.py install" in cmd shell	Getting E Reading
Dn Linux:	 Pretreating s
1): download the PyBioMed package (.zip)	 Pretreatin
2): extract PyBioMed-1.0.zip	 Pretreatir
3): open shell and change dictionary to PyBioMed-1.0 (write the command "cd PyBioMed-1.0" in shell)	sequence Calculating
4): write the command "python setup.py install" in shell	descriptors Calculating
Getting molecules	descri
The PyGetMe1 provide different formats to get molecular structures, protein sequence and DNA sequence.	functi

SBI 한국생명정보학회 Korean Society for Bioinformatics

Composition, Transition and Distribution (CTD), 147D

Sequence	\mathbf{M}	т	\mathbf{E}	I	т	Α	\mathbf{S}	\mathbf{M}	v	к	\mathbf{E}	\mathbf{L}	\mathbf{R}	\mathbf{E}	А	т	\mathbf{G}	\mathbf{T}	G	Α
Sequence Index	1				5					10					15					20
Transformation	3	2	1	3	2	2	2	3	3	1	1	3	1	1	2	2	2	2	2	2
Index for 1			1							2	3		4	5						
Index for 2		1			2	3	4								5	6	7	8	9	10
Index for 3	1			2				3	4			5								
1/2 Transitions															1					
1/3 Transitions				Ì.						1		1	1							
2/3 Transitions		1			1			1												

	Group 1	Group 2	Group 3
Hydrophobicity	Polar	Neutral	Hydrophobicity
	R, K, E, D, Q, N	G, A, S, T, P, H, Y	C, L, V, I, M, F, W
Normalized van der Waals Volume	0-2.78	2.95-4.0	4.03-8.08
	G, A, S, T, P, D, C	N, V, E, Q, I, L	M, H, K, F, R, Y, W
Polarity	4.9-6.2	8.0-9.2	10.4-13.0
	L, I, F, W, C, M, V, Y	P, A, T, G, S	H, Q, R, K, N, E, D
Polarizability	0-1.08	0.128-0.186	0.219-0.409
	G, A, S, D, T	C, P, N, V, E, Q, I, L	K, M, H, F, R, Y, W
Charge	Positive	Neutral	Negative
	K, R	A, N, C, Q, G, H, I, L, M, F, P, S, T, W, Y, V	D, E
Secondary Structure	Helix	Strand	Coil
	E, A, L, M, Q, K, R, H	V, I, Y, C, W, F, T	G, N, P, S, D
Solvent Accessibility	Buried	Exposed	Intermediate
	A, L, F, C, G, I, V, W	R, K, Q, E, N, D	M, S, P, T, H, Y

출입 SBi 한국생명정보학회 https://mran.microsoft.com/snapshot/2017-12-06/web/packages/protr/vignettes/protr.html

💭 jupyter	Protein_representations Last Checkpoint: 6분 전 (unsaved changes)	e -	Logout	Control Panel
File Edit	View Insert Cell Kernel Widgets Help		Trusted	Python 3
10 []:	Image: The second s			
In []:	len(AAD)			
	Using PyBioMed - CTD descriptor			
In []:	from PyBioMed.PyProtein import CTD			
	<pre>protein_descriptor = CTD.CalculateCTD(protein) print (protein_descriptor)</pre>			
in []:	print (ien(protein_descriptor))			
in []:				
in []:				
In []:				
In []:				
In [];				
in []:				

PART1

- Introduction to pharmacogenomics
 - Drug discovery and development
- Key data sources
- Representations of proteins, chemicals
- PART2
 - Studies related to pharmacogenomics based on machine learning

MOLECULAR REPRESENTATION

SBI 한국생명정보학회

Types of molecular representations

- Molecular descriptors
- Molecular fingerprints

SBI 한국생명정보학회 Korean Society for Bioinformatics

Molecular fingerprints

 Fingerprint representations of molecular structure and properties are a particularly complex form of descriptors.
 Fingerprints are typically encoded as binary bit strings whose settings produce, in different ways, a bit "pattern" characteristic of a given molecule.

 Fingerprints are designed to account for different sets of molecular descriptors, structural fragments, possible connectivity pathways through a molecule, or different types of pharmacophores.

SBi 한국생명정보학회

Types of fingerprints

Class	Туре	Examples						
Structural based	Pattern-based FP	MACCS, PubChem, FP3, FP4						
Topological	Path-based FP	Daylight, FP2						
	Circular FP	ECFP2, ECFP4, ECFP6						
	Pharmacophore FP	2D pharmacophore						
Neural network based	Graph-based representation	GNN (graph convolutional network (GCN), graph attention network (GAT), gated graph neural network (GGNN),)						
	Molecular embedding	seq2seq, mol2vec						

- 23 -

Pattern based fingerprints

SMARTS pattern

• 특정 SMARTS pattern 구조를 기반으로 한 지문표현자 생성 방법

Key position	Key description	Annotation
11	*1~*~*~*~1	4M Ring
12	[Cu,Zn,Ag,Cd,Au,Hg]	Group IB, IIB
13	[#8]~[#7](~[#6])~[#6]	ON(C)C
14	[#16] - [#16]	S-S
:	:	:

MACCS fingerprint SMARTS pattern 기준표

- ✓ MACCS fingerprints (166 keys)
- ✓ FP3, FP4 fingerprints from OpenBabel
- 특징점
- 이미 정의된 하위 구조의 유무를 판단하여 생성되는 지문표현자로 하위 구조 검색에 유용하나 이외의 구조를 표현할 수 없음
- 상대적으로 벡터의 길이가 짧음

SBI 한국생명정보학회

Path-based fingerprints

- 원자를 기준으로 모든 linear fragment 를 고려하는 방식으로 화합물 구조 그래프를 표현함
- 해싱(hashing) 알고리즘을 사용함
- 관련 Fingerprints
 - ✓ FP2 fingerprints (1,021 bit vector)
 - ✓ RDK fingerprints, Layered fingerprints (RDKit), CDK fingerprints (CDK)

SBi 한국생명정보학회

- PubChem Fingerprint
- PubChem에서 제시한 하위 구조를 기반으로 한 지문표현자 (881 bit vector)

Sections	Description				
Section 1 (#0~#114)	Hierarchic element counts				
Section 2 (#115~#262)	Rings in a canonic Extended Smallest Set of Smallest Rings ring set				
Section 3 (#263~#326)	Simple atom pairs				
Section 4 (#327~#415)	Simple atom nearest neighbors				
Section 5 (#416~#459)	Detailed atom neighborhoods				
Section 4 (#460~#712)	Simple SMARTS patterns				
Section 4 (#713~#880)	Complex SMARTS patterns				
PubChem fingerprints bit별 description					

SBi 한국생명정보학회

GNN

- Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs.
 - Extract features by considering the structure of the data
 - Enables automatic feature extraction from raw inputs

 \rightarrow can embed the drug(molecule) into vectors which has **topological structure information** with edge and atom features

With end to end learning, the model can learn data driven features

(a) 2D Convolution. Analogous to a graph, each pixel in an image is taken as a node where neighbors are determined by the filter size. The 2D convolution takes the weighted average of pixel values of the red node along with its neighbors. The neighbors of a node are ordered and have a fixed size.

(b) Graph Convolution. To get a hidden representation of the red node, one simple solution of the graph convolutional operation is to take the average value of the node features of the red node along with its neighbors. Different from image data, the neighbors of a node are unordered and variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

https://arxiv.org/abs/1901.00596

SBi 한국생명정보학회

Graph Neural Network

Update

update : function that update the t+1 time step hidden representation with t time step node representation and message passing

$$- h_v^{t+1} = update(m_v^{(t+1)}, h_v^{(t)})$$

Graph Neural Network Models

- Semi –Supervised Classification with Graph Convolutional Networks (GCN)
- Inductive Representation Learning on Large Graphs (GraphSAGE)
- Neural Message Passing for Quantum Chemistry (MPNN)
- Graph Attention Networks (GAT)
- How Powerful Are Graph Neural Network? (GIN)
- Analyzing Learned Molecular Representations for Property Prediction (DMPNN)

 \rightarrow Various Message passing, Update, Readout function

To be continued.

1. P 2. PR 3.

SBI 한국생명정보학회

Contents

- PART1
 - Introduction to pharmacogenomics
 - Drug discovery and development
 - Key data sources
 - Representations of proteins, chemicals

PART2

- Studies related to pharmacogenomics based on machine learning

CYP450 VARIATIONS AND DRUG RESPONSES

SBi 한국생명정보학회 Korean Society for Bioinformatics

Pharmacogenomics and drug metabolism

 A patient's genetic makeup and their response to pharmaceutical drugs are seen with regards to their metabolism

CYP450 isozymes

 Humans have 57 genes and more than 59 pseudogenes divided among 18 families of cytochrome P450 genes and 43 subfamilies

Family	Function	Members	Genes	pseudogenes
CYP1	drug and steroid (especially estrogen) metabolism, benzo[a]pyrene toxification (forming (+)-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide)	3 subfamilies, 3 genes, 1 pseudogene	CYPIA1, CYPIA2, CYPIB1	CYP1D1P
CYP2	drug and steroid metabolism	13 subfamilies, 16 genes, 16 pseudogenes	CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP2F1, CYP2J2, CYP2R1, CYP2S1, CYP2U1, CYP2W1	Too many to list
CYP3	drug and steroid (including testosterone) metabolism	1 subfamily, 4 genes, 4 pseudogenes	СҮРЗА4, СҮРЗА5, СҮРЗА7, СҮРЗА43	CYP3A51P, CYP3A52P CYP3A54P, CYP3A137
CYP4	arachidonic acid or fatty acid metabolism	6 subfamilies, 12 genes, 10 pseudogenes	CYP4A11, CYP4A22, CYP4B1, CYP4F2, CYP4F3, CYP4F8, CYP4F11, CYP4F12, CYP4F22, CYP4V2, CYP4X1, CYP4Z1	Too many to list
CYP5	thromboxane A2 synthase	1 subfamily, 1 gene	CYP5A1	
CYP7	bile acid biosynthesis 7-alpha hydroxylase of steroid nucleus	2 subfamilies, 2 genes	CYP7A1, CYP7B1	
CYP8	varied	2 subfamilies, 2 genes	CYP8A1 (prostacyclin synthase), CYP8B1 (bile acid biosynthesis)	
CYP11	steroid biosynthesis	2 subfamilies, 3 genes	CVP11A1, CVP11B1, CVP11B2	
CYP17	steroid biosynthesis, 17-alpha hydroxylase	1 subfamily, 1 gene	CYP17A1	
CYP19	steroid biosynthesis: aromatase synthesizes estrogen	1 subfamily, 1 gene	CYP19A1	
CYP20	unknown function	1 subfamily, 1 gene	CYP20A1	
CYP21	steroid biosynthesis	1 subfamilies, 1 gene, 1 pseudogene	CYP21A2	CYP21A1P
CYP24	vitamin D degradation	1 subfamily, 1 gene	CYP24A1	
CYP26	retinoic acid hydroxylase	3 subfamilies, 3 genes	CYP26A1, CYP26B1, CYP26C1	
CYP27	varied	3 subfamilies, 3 genes	CYP27A1 (bile acid biosynthesis), CYP27B1 (vitamin D $_3$ 1-alpha hydroxylase, activates vitamin D $_3$), CYP27C1 (unknown function)	
CYP39	7-alpha hydroxylation of 24-hydroxycholesterol	1 subfamily, 1 gene	CYP39A1	
CYP46	cholesterol 24-hydroxylase	1 subfamily, 1 gene, 1 pseudogene	CYP46A1	CYP46A4P
CYP51	cholesterol biosynthesis	1 subfamily, 1 gene, 3 pseudogenes	CYP51A1 (Janosterol 14-alpha demethylase)	CYP51P1, CYP51P2, CYP51P3

* SBi 한국생명정보학회 https://en.wikipedia.org/wiki/Cytochrome_P450#Drug_metabolism

McInnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6 haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399

Related study: prediction of CYP2D6 haplotype function

- CYP2D6 is an enzyme expressed in the liver that is responsible for metabolizing more than 20% of clinically used drugs
- More than 130 haplotypes comprised of single nucleotide variants (SNVs), insertions and deletions (INDELs), and structural variants (SVs) have been discovered and catalogued in the Pharmacogene Variation Consortium

SBI 한국생명정보학회

Related study: prediction of CYP2D6 haplotype function

Input

- CYP2D6 Full genomic sequence (one hot vector)
- 9 annotations (one hot vector)
 - · Coding region, rare variants, deleterious, INDEL, methylation mark, DNase hypersensitivity, TF binding site, eQTL, active site
- Output
 - Haplotype activity (No, Reduced, Normal activity)
- Data
 - Pre-training with 50,000 randomly selecting a pair of CYP2D6 star alleles with curated function, Pre-training with 314 in vivo data
 - Fine-tuning with PharmVar data
- Model 3 CNN + 2 FC

응용 SBi 한국생명정보학회

Fig 3. Prediction of star allele function with *in vitro* data. The figures summarize the distribution of metabolic activity measured *in vitro* for star alleles whose function was predicted by Hubble. The distribution of functional activity is shown in (a) and (b) for star alleles with CPIC-assigned clinical function assignments. (a) star alleles included in the training process are depicted with a triangle, and those held for testing are depicted with a circle. Error bars depict the standard error of the measured function. The outer edge of each point indicates the true, curator-assigned phenotype, while the inner color represents predicted function. (b) distribution of values for each predicted functional class for data shown in (a). (c) star alleles without assigned function status; colors represent the predicted function. (d) variance in measured activity of the star alleles for each predicted label for data shown in (c).

McInnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6 haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399

GENETIC VARIATIONS AND DRUG RESPONSES

SBI 한국생명정보학회

Related study: prediction of cancer cell sensitivity to drugs

- Genomic features
 - MSI, variations, CNV
- Simple neural network

OPEN CACCESS Freely available online

Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties

Michael P. Menden¹, Francesco Iorio^{1,2}, Mathew Garnett², Ultan McDermott², Cyril H. Benes³, Pedro J. Ballester¹*, Julio Saez-Rodriguez¹*

1 European Bioinformatics Institute, Welkome Trust Genome Campus-Cambridge, Cambridge, United Kingdom, 2 Cancer Genome Project, Welkome Trust Sanger Institute, Welkome Trust Genome Campus-Cambridge, Cambridge, United Kingdom, 3 Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, United States of America

🚰 SBi 한국생명정보학회

Menden, Michael P., et al. "Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties." PLoS one 8.4 (2013): e61318.

Related study: prediction of cancer cell sensitivity to drugs

SCIENTIFIC **REPORTS**

OPEN Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature ished online: 11 June 2018 Yoosup Chang¹, Hyejin Park¹, Hyun-Jin Yang², Seungju Lee¹, Kwee-Yum Lee^{2,3}, Tae Soon Kim^{2,4}, Jongsun Jung⁶ & Jae-Min Shin¹

. o January 2018 29 May 201° 20¹¹

- GDSC
- 28,328 mutation positions in 567 genes
- 787 cell lines
- 244 drugs

🚰 SBi 한국생명정보학회

Chang, Yoosup, et al. "Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug Effectiveness from Cancer Genomic Signature." Scientific reports 8.1 (2018): 8857

DTI prediction using protein descriptors

응을 SBi 한국생명정보학회

DTI prediction using protein sequence

Fig. 2. DeepDTA model with two CNN blocks to learn from compound SMILES and protein sequences

SBI 한국생명정보학회

DTI prediction using protein sequence

RESEARCH ARTICLE

DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences

Ingoo Lee[®], Jongsoo Keum[®], Hojung Nam[®]*

- Model
 - Input Protein sequence, ECFP4
 - Output Interaction/Non-interaction
 - Model CNN for protein, DNN for drug
- Contribution
 - Embedding representation of protein works well
 - Model can capture local residue patterns

응고 SBI 한국생명정보학회 Kovena Society for Bioinformatic Sequences. PLoS Comput Biol 15(6): e1007129. https://doi.org/10.1371/journal.pcbi.1007129

• Compare pooled convolution result with binding sites from sc-PDB

Fig. 1. HoTS model overview. HoTS considers amino acid sequences of individual proteins and Morgan/circular fingerprints of drug compounds. Therefrom, local residue patterns are extracted by a convolutional neural network, and maximum values are pooled from each protein grid. Compound and protein grids are taken into transformers to model interactions between local residue patterns and individual compounds. After passing the transformers, a compound token is used to predict DTIs, and individual protein grids are used to reflect binding regions (BR). For DTI prediction, HoTS calculates a prediction score **P**_{DT1} ranging from 0 to 1 and center (C), length (W), and confidence (P) scores for binding regions.

SBI 한국생명정보학회 Korean Society for Eloinformatics

Ingoo Lee, Hojung Nam*, "Sequence-based prediction of binding regions and drug-target interactions", Under review.

Fig. 3. Prediction and visualization of binding regions on 3D-complexes. A) Predicted binding regions for drug-target interactions between HDAC2_HUMAN and N-(4-aminobiphenyl-3-yl)benzamide (LLX). B) Visualization of predicted binding regions on the 3D complex of human HDAC2 complexed with LLX (Protein Data Bank: 3MAX). C) Predicted binding regions between GNAS2_BOVIN and 5'-guanosine-diphosphate-monothiophosphate (GSP). D) Visualization of predicted binding regions on the 3D complex of bovine GNAS2 complexed with GSP (Protein Data Bank: 1CUL).

Fig. 4. Prediction performance for drug-target interactions in the independent test datasets.

SBi 한국생명정보학회

Ingoo Lee, Hojung Nam*, "Sequence-based prediction of binding regions and drug-target interactions", Under review.

GENE EXPRESSION AND DRUG RESPONSE

SBi 한국생명정보학회 Korean Society for Bioinformatic

Related study: prediction of cancer cell sensitivity to drugs

	method	NN	KBMF	RF	DeepDSC
CV	RMSE	0.83	0.83+/-	0.75+/-	0.52+/-0.01
			1.00	0.01	
	R ²	0.72	0.32+/-	0.74+/-	0.78+/-0.01
			0.37	0.01	
LOTO	RMSE	0.99	NA	0.81+/-	0.64+/-0.05
				0.16	
	R ²	0.61	NA	0.72+/-	0.66+/-0.07
				0.08	
LOCO	RMSE	NA	0.85+/-	1.40+/-	1.24+/-0.74
			0.41	0.80	
	R ²	NA	0.52+/-	0.13+/-	0.04+/-0.06
			0.37	0.11	

- 10-fold cross-validation
- Better performance than typical machine learning methods

Li, Min, et al. "DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines." IEEE/ACM

• Deep learning based feature extraction

transactions on computational biology and bioinformatics (2019).

SBi 한국생명정보학회

SBI 한국생명정보학회 BMC medical genomics 12.1 (2019): 18.

SBI 한국생명정보학회

Manica, Matteo, et al. "Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders." Molecular Pharmaceutics (2019).

Contents

- PART1
 - Introduction to pharmacogenomics
 - Drug discovery and development
 - Key data sources
 - Representations of proteins, chemicals

PART2

- Studies related to pharmacogenomics based on machine learning

