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Curriculum Vitae

Speaker Name: Hojung Nam, Ph.D.

» Personal Info

Name Hojung Nam
Title Associate Professor
Affiliation Gwangju Institute of Science and Technology (GIST)

» Contact Information
Address 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005,

Republic of Korea

Email hjnam@gist.ac.kr
Phone Number  062-715-2641

Research Interest

Bioinformatics, Systems Biology, Cheminformatics, Machine learning

Educational Experience

2001 B.S. in Computer Science, Sogang Univ., Seoul, Korea.
2003 M.S. in Computer Science, KAIST, Daejeon, Korea.
2009 Ph.D. in Bio and Brain Engineering, KAIST, Daejeon, Korea.

Professional Experience

2009-2013 Postdoctoral Researcher, Bioengineering, University of California, San Diego, CA USA
2013-2018 Assistant Professor, Gwangju Institute of Science and Technology (GIST)
2018- Associate Professor, Gwangju Institute of Science and Technology (GIST)

Selected Publications (5 maximum)

1.

Hyunho Kim, Eunyoung Kim, Ingoo Lee, Bongsung Bae, Minsu Park, Hojung Nam* " Artificial
Intelligence in Drug Discovery: A Comprehensive Review of Data-Driven and Machine Learning
Approaches”, Biotechnology and Bioprocess Engineering, volume 25, pages895-930(2020).
Hyunho Kim, Hojung Nam* "hERG-Att: Self-Attention-Based Deep Neural Network for
Predicting hERG Blockers", Computational Biology and Chemistry, Available online 19 May
2020, 107286.

. Soobok Joe , Hojung Nam?*, "Prediction model construction of stem cell pluripotency using

CpG and non-CpG DNA methylation markers", BMC Bioinformatics, 2020 21:175.

. Heeyeon Choi, Soobok Joe, Hojung Nam* "Development of Tissue-Specific Age Predictors

Using DNA Methylation Data", Genes 2019, 10(11), 888.

. Ingoo Lee, Jongsoo Keum, Hojung Nam* "DeepConv-DTI: Prediction of drug-target

interactions via deep learning with convolution on protein sequences”, PLoS Computational
Biology 15(6): e1007129. https://doi.org/10.1371/journal.pcbi.1007129
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INTRODUCTION TO
PHARMACOGENOMICS

faSBiRReREEns

Pharmacogenomic

" The term pharmacogenetics was coined in the 1950s and
captures the idea that large effect size DNA variants contribute
importantly to variable drug actions in an individual (single
gene-drug).

" The term pharmacogenomics is now used by many to describe
the idea that multiple variants across the genome that can
differ across populations affect drug response. The
International Conference on Harmonisation, a worldwide
consortium of regulatory agencies, has defined
pharmacogenomics as the study of variations of DNA and
RNA characteristics as related to drug response.

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.
N




” DNA
profiling

Patients with same condition

/il

Bad side effects

Good response

No response

Look for genetic variants that affect drug response used to treat the
condition. The analysis will yield results that allow physicians to
determine if their patient will have a positive response to the drug

treatment.
[National Human Genome Research Institute]

Pharmacogenomics Adds Precision to the Practice of Medicine, June 15, 2015 (Vol. 35, No. 12)

https://www.genengnews.com/magazine/249/pharmacogenomics-adds-precision-to-the-practice-of-medicine/

Current Medicine 2
One Treatment Fits All CrownBio

/ ll ' ' Il Effect
No effect
Therapy
Cancer patients with w h

e.g. colon cancer
Adverse effects

Future Medicine
More Personalized Diagnostics

7R e
E’% el *K., u W
&

Cancer patients with Blood, DNA,
e.g. colon cancer Urine and Tissue Analysis

Effect

https://blog.crownbio.com/pdx-personalized-medicine#_

-3-



Drug discovery and development

Drug Pre-
| ................................... discovery — | ......... dlinical

Target Hit
discovery screening

Lead
optimization «# clinical

Literature study 3D Modeling Safety / PK
KO/KD test SAR/QSAR 50~150 patients 500~

ADME/PK

Efficacy
100~200 patients

High throughput
screening

Efficacy
5000 patients

a.S T BIR A M B ELE
faop ERgsEEs

Pharmacogenomics in
drug discovery and development

Pre-

Drug
| ................................................................... | ......... dinical

discovery

Target Hit Lead
discovery screening 4 optimization « clinical

Suggest best candidates Suggest best trial case

Target discovery ADME/T

w/ variations (CYP450)
Interactions w/

variations

Drug
repositioning

Patients stratification

§aoBigRYIR=a




Example 1 -
TPMT

Pharmacogenetics in
Oncology

Azathioprine or
6-mercaptopurine —

dose

faSBiRReREEns

The thiopurine S-methyltransferase (TPMT) is a
metabolizer of chemotherapeutic agents 6MP
and azothiopurine (used mainly in blood-based
malignancies)

TPMT deficiency leads to severe toxicity
associated with treatment (potential mortality)

TPMT function
Normal function s Expected drug
effect
Decreased function Risk of
> | haematological
toxicity
> No function High risk of
haematological
toxicity

Dan M Roden et al., Lancet .

2019 Aug 10;394(10197):521-532.

Example 2 -
CYP2D6

Codeine-6-glucuronide

faSBigReBEEAs)

|
S )
(Mgt ghcuronice )

Codeine dose

CYP2D6 function

Cytochrome P450 2D6 (CYP2D6) is an enzyme that in
humans is encoded by the CYP2D6 gene. CYP2D6 is
primarily expressed in the liver.

In particular, CYP2D6 is responsible for the metabolism
and elimination of approximately 25% of clinically used
drugs, via the addition or removal of certain functional
groups — specifically, hydroxylation, demethylation, and
dealkylation. CYP2D6 also activates some prodrugs.

Active drug concentration

Increased function High morphine

concentration
Expected morphine
concentration

Normal function

Decreased function

Lower morphine
> P

concentration

No function

vy vy

No morphine

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.
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SNP (THU A 7| ChA /)

Single-nucleotide polymorphism

From Wikipedia, the free encyclopedia

This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by
* removing excessive or inappropriate external links, and converting useful links where appropriate into footnote

references. (October 2012) (Learmn how and when to remove this template message)

A single-nucleotide polymorphism, often abbreviated to SNP (/snip/; plural /), is a variation in a single

nuclectide that occurs at a specific position in the genome, where each variation is present to some
appreciable degree within a population (e.g. = 1%)."]

For example, at a specific base position in the human genome, the C nucleotide may appear in most
individuals, but in a minerity of individuals, the position is cccupied by an A. This means that there is a SNP at
this specific position, and the two possible nuclectide variations — C or A — are said to be alleles for this

position.

SNPs underlie differences in our susceptibility to disease; a wide range of human diseases, e.g. sickle-cell
anemia, P-thalassemia and cystic fibrosis result from SNPs.[ZIEI4 The severity of illness and the way the body

responds to treatments are also manifestations of genetic variations. For example, a single-base mutation in The upper DNA molecule differs from the lower
DMA molecule at a single base-pair location (a C/A

polymorphism)

&
the APOE (apolipoprotein E) gene is associated with a lower risk for Alzheimer's disease.l®!

A single-nucleotide variant (SNV) is a variation in a single nucleotide without any limitations of frequency and
may arise in somatic cells. A somatic single-nucleotide variation (e.g., caused by cancer) may also be called a
single-nucleotide alteration.

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism
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NCBI dbSNP

Sign in to NCBI
abSNP e o ° | ezm
Create alet  Advanced Help
Clinical Display Settings: ~ Summary, 20 per page, Sorted by SNP_ID Sendto: =~  Filters: Manage Filters
significance
benin Find related data =
drug response Search results AT
likely benign . Database:
other Items: 1 to 20 of 3318 Page El of 166 Next= | last=>
Validation Status
by-ALFA O rs16947 [Homo sapiens]
by-cluster 1.
by-frequency Variant type: SNV Search details =
—_— Alleles: G=AT [Show Flanks] =
E:\'f"“:“‘“: - Chromosame: 2242127941 (GRCh38) cyp2dBlAll Fialds]
R Ane 22:42523943 (GRCh37)
FubMediened Canonical SPDI: NC_000022.11:42127940:G:A NC_000022. 11:42127940:G:T
s Gene: CYP2D6 (Varview) P
f ; ; . 4
Function Class Fulnlction?l Qunsequence: F:dllngb_sgquincg_w:jrlant‘mlssense_vanam E—
inframe delstion Clinical significance: Ly enrenan Sg-reapanss | Search | See more...
S mictha Validated: by frequency.by alfa.by cluster ——
. MAF: A=0.366535/4092 (ALFA)
o A=0.255618/91 (PharmGKE)
F -
ot A=0.376465/47272 (TOPMED) Recent activity
non coding franscript variant NC_000022.11:9.42127941G=A, NC_000022.11:9.42127941G>T, Turmn OFf Clear
g P NG_008376.4:9.7870C=T, NG_008376.4:0.7870C=A, NG_008376.3:.7051C>T, 246 (3318
SHRONYmOtS NG_008376.3:0.7051C>A, NM_000106.5: 886C=T, NM_000106.6:C. 886C=A, Q cyp2ds (3318)
i MILE AAASAE C.n AAEA_T MLE AARARS T AAAA. & AL ARAAAE 454 4im TAAAT SNF
Variation Cla more
del See more...
delins
ins
iens,
mnv picris]
Annotation SNV
AT =2,
https://www.ncbi.nlm.nih.gov/snp/?term=cyp2d6
.8C0" 13
AN TRk
oa Waorman Socity for Risinfarmatics
N x +
5 C (0 & ncbinlmnihgov * S % =2=Doo0oCcBNEDL(
Sign in to NCBI
[All Databases v |
NCB8I Home Wel to NCBI Popular Resources
Resource List (A7) The National Center for Biotechnology Information advances science and health by providing access to PubMed
N G aaTee blomedical and genomic information Bookshelf
Chomicals & Bloassays About the NCBI | Mission | Organization | NCB! News & Blog PubMed Central
Data & Software BLAST
DNAR RNA Submit Download Learn Nucleotide
Domains & Structures Deposit data or manuscripts Transfer NCBI data to your Find help documents, sttend a Genome
= 2 inta NCBI databases computer class o wach a tutorial SNP
enes & Exprassion
Genetics & Medicine Sarie
Genomes & Maps S0t
PubChem
Homology
Lieraturs
Proteins NCBI News & Blog
Sequence Analysis Develop Analyze Research Allele Fraquency Aggregator (ALFA)
Taxonony Release 2 is available!
Y Use NCBI APIs and code Identify an NCBI tool for your Explore NCB! research and
Training & Tutorials libraries 1o build applications. data analysis task collaborative projects
Variation e
b | 4 NCBI on YouTube  RAPT and BLAST+
- ) & on the Cloud. SARS-CoV-2 genome data
ai | =) in Datasets
RefSeq release 204 is now avallable
More.
You are hare: NCBI > National Center for Biotechnology Information Suppon Center
cernue craoren occrnmree onou a0 ceanoen [ —
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gnomAD

gl mAD browser n About Downloads Terms Contact Jobs FAQ

gnomAD
NTVYY

genome aggregation database

Search by gene, region, or variant

Examples - Gene: PCSK9, Variant: 1-55516888-G-GA

The Genome Aggregation Database (gnomAD) is a resource developed by an international coalition
of investigators, with the goal of aggregating and harmonizing both exome and genome sequencing
data from a wide variety of large-scale sequencing projects, and making summary data available for
the wider scientific community.

The data set provided on this website spans 125,748 exome sequences and 15,708 whole-genome
sequences from unrelated individuals sequenced as part of various disease-specific and population
genetic studies. The gnomAD Principal Investigators and groups that have contributed data to the
current release are listed here.

All data here are released for the benefit of the wider biomedical community, without restriction on
use - see the terms of use here. Sign up for our mailing list for future release announcements here.

https://gnomad.broadinstitute.org/

e ) 15
faSBiRReREEns

) X =t

€ > C O & gnomadbroadinstitute.org * g ,9=0600¢ L B-»=0

Terms Publicstions Contact FAQ

gnomAD browser

gnomAD
o bl & &

genome aggregation database
gnomAD v2.1.1 ~
Please note that gnomAD v2.1.1 and v3.1 have substantially different but overlapping sample

compositions and are on different genome builds. For more information, see the FAQ 'S

Examples - Gene: PCSK9, Variant: 1

The Genome / jation Database (gnomAD) is a resource developed by an international coalition
of investigators, with the goal of aggregating and harmonizing both exome and genome
sequencing data from a wide variety of large-scale sequencing projects, and making summary data
available for the wider scientific community.

The v2 data set (GRCh37/hg19) provided on this website spans 125,748 exome sequences and
15,708 whole-genome sequences from unrelated individuals sequenced as part of various disease-
specific and population genetic studies. The v3.1 data set (GRCh38) spans 76,156 genomes, selected
as in v2. The gnomAD Principal Investigators and groups that have contributed data to the current

https://gnomad.broadinstitute.org/ 16
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https://www.pharmvar.org/htdocs/ar
chive/index_original.htm

@ . B AHOH 2 &}
SR ERBLRas

The Human Cytochrome P450 (CYP)
Allele Nomenclature Database

Allele nomenclature for Cytochrome P450 enzymes

New List: CYP allele frequencies from 56,945 unrelated individuals
of five major human populations

Inclusion criteria - New criteria regarding variants identified by NGS

IRAMP_calculator of contribution of rare variants.
Cytochrome P450 Oxidoreductase. POR

CYP1 family:
CYPIAI; CYPIA2; CYPIBI

CYP?2 family:
CYP246; CYP2413; CYP2B6; CYP2CS8; CYP2C9; CYP2C19;
CYP2Do; CYP2EI; CYP2FI; CYP2J2; CYP2RI; CYP2S1; CYP2W1

CYP3 family:
CYP3A44; CYP345; CYP3A7; CYP3A443

CYP4 family:
CYP4AILL; CYP4A22; CYP4B1; CYP4F2

CYP=4 families:
CYPSAI; CYPS8AI; CYPI9AI; CYP2142; CYP2641

SNP information on CYP17A1 can be found here

& Human Cyt e P4 X +
€ 5 C (3 @& pharmvarorg/htdocs/archive/mdex_ongmalht

The Human Cytochrome P450 (CYP)
Allele Nomenclature Database

Allele nomenclature for Cytochrome P450 enzymes

New List: CYP allele frequencies from 56.945 unrelated individuals

of five major human populations

Inclusion criteria - New criteria regarding variants identified by NGS

iRAMP_calculator of contribution of rare variants.

* RO =06co0ocBREREENCE »»=@Q:

Cytochrome P450 Oxidoreductase: POR

CYPI family:
CYPIAL: CYPIA2; CYPIBI
CYP?2 family:

CYP246; CYP2AI3; CYP2BG6; CYP2CS; CYP2C9; CYP2CIY;

CYP2D6: CYP2EI: CYP2F1; CYP2J2; CYP2R1; CYP2S1; CYP2WI =|

CYP3 family:
CYP344; CYP3AS; CYP3A47; CYP3A443

CYPA family:
CYP4A41l: CYP4422; CYP4B1; CYP4F2

CYP=>4 families:

CYPSAI: CYP8AI: CYP1941: CYP2142: CYP26A41

ﬁ';SBl SRYI Y https://www.pharmvar.org/htdocs/archive/index_original.htm

-9-



PharmVar

The Human CYP Allele
Nomenclature Database

PharmVar

2 Ll
% PharmGKB

After more than 15 years the Human Cytochrome
P450 (CYP) Allele Nomenclature Database has transitioned...

\ 4

...to the Pharmacogene Variation (PharmVar) Consortium at www.PharmVar.org

PharmVar will serve as a central repository for pharmacogene variation to facilitate
allele (haplotype) designation and the interpretation of pharmacogenetic test results to guide precision medicine
PharmVar is a PGRN resource funded by NIGMS.

After September 26, 2017, please visit www.PharmVar.org to access content of the original
P450 Nomenclature Database

http://www.cypalleles.ki.se/

S CD; B2 ANCIZ K 5
§eSBiaauBELas

wan Saciaty for Rininfermutics

PV PhacreVa x I
€« C O @ pharmvarerg * gD CBEROENSE O
Ph(]rmVOr b HOME ABOUT GENES SUBMISSIONS MEMBERS RESOURCES CONTACT LOGIN

Pharmacogene Variation Consorfium

VD tootus )

PharmVar s

Pharmacogene Variation Consortium

The Pharmacogene Variation (PharmVar) Consortium is a central repository for
pharmacogene (PGx) variation that focuses on haplotype structure and allelic variation.

The information in this resource facilitates basic and clinical research as well as the

interpretation of pharmacogenetic test results to guide precision medicine.

o PharmVar API Services are now available for third party use. For more information, visit the AP| Service Documentation Page

W Follow us on Twitter

PharmVar Publications

Articles by Ph are on the resources page.

Original content from the cypalleles.ki.se site is available through the archive

https://www.pharmvar.org/
faSBigRYEEAe .

san Society for Bioinformatics
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PHARMGKB

HARMGKB Publications News Downloads Contact @ Help

Search PharmGKB Q

Search for a molecule, gene, variant, or combination

Therapeutic Resource for COVID-19

PharmGKB data are under a Creative Commons license. More details are in our Data Usage
Policy. Please cite PharmGKB if you use our information or images.

Drug Label Clinical Guideline Curated Annotated
Annotations Annotations Pathways Drugs

780" 165" 9 151° B 709

https://www.pharmgkb.org/

1o® | Bl AHCH 24 B}
L CpjtRua LRy

Waraan Sociaty far Risinfarmntics

8§ Pharmax X +
<« C (0 @ pharmgkborg Q*Q%QLULOGB-QQQZ\JAH‘*-;JOE
)
\R PHARMGKB Publications News Downloads Contact @ Help
Search PharmGKB Q
Search for a molecule, gene, variant, or combination
Therapeutic Resource for COVID-19
PharmGKB data are under a Creative Commons license. More details are in our Data Usaage Policy.
[ Please cite PharmGKE if you use our information or images.
Drug Label Clinical Guideline Curated Annotated
Annotations Annotations Pathways Drugs

B 780° [7] 165° 1517 B 709

https://www.pharmgkb.org/

1% C D} BH2ANDE 2 B 5}
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Table 2. Resources for pan-cancer genomics profiles and todls

Respurce Data type Profiling sample size Description Link References
platform
Resources for pan-cancer  wiz
TOGA (The Cancer  Clin, CNA, GEX,  Microarray, ~11 300 Mostly primary tumors of 33 Individual cancers:  [150]
. . Genome Atlas) Methyl, miEX,  NGS cancers https://portal.gdc.
SNV cancer.gow’
genomics profiles and tools Sy e
data: hitps./gdc.
cancer gov/
node/o0s’
Also downloadable
byan
R/Bioconductor
age
TCGAbickinks [41]
METS00 CMA, SNV NGS5 500 Metastatic tumors of 30 httpsfmetS00.path. [43]
cancers med umich.edw
Pediatric cancers
TARGET Clin, GEX, miEX, MNGS ~3200 (according 6 pediatric cancers (sccording  httpsz/portal pde. [44]
(Therapeutically SNV tothe GDC Data 1o the GDC Data Portal cancer gov/
Applicshle Portal accessed  accessed in May 2018) Also downloaded
Research to in May 2018) byan
Generate Effective R/Bloconductor
Treatments) package
TCGAbickinks [+1]
PedPancan SNV NGS 951 24 padiatric cancers httpo/fwrwra.
(Pediatric pedpancan.com

Pan-Cancer study)
‘Cancer cell lines

(CCLE (Cancer Cell CMA, GEX, RPPA, Micoarray, ~1500 https:/portals. [15,151]
Line Encyclopedia) SNV NGS broadinstitute org/
ccle
Also arressible
through the Cancer
Dependency Map
(DepMap): https://
depmap.org/portal’
Curations
I0GC (international  Clin, CNA, GEX,  Curation  ~24 000 Curation of 80+ intemational  hitpJficgcorg/ [45]
Cancer Genome Methyl, miEx, cancer projects, induding
Consortium) SNV TCGA and TARGET
COSMIC (Catzlogue  CMNA, SNV Curation Summarization of https:/cancer. 28]
of Somatic cancer-related mutations sangeracul/
Mutations in ACToss 32 000+ tumors and cosmic
Cancer) cancer calls curated from
25 000 papers
Pan-cancer data visualization
TumaorMap 2D maps Curation Visualization of TOGA, TARGET, https/tumormap.  [47]
etc. ucscedu!
Gene signstures and biological pathways
MsigDB (Molecular  Genes sets Curation  ~17 800 gene sels Genes seis of cytobands, hitp://software. [52-54]
Signatures curations, motifs, broadinstitute org/
Database computation, Gene gsea/msigdb/index.
Ontologies, oncogenic sp
signatures and immunclogy
Pathway Commons  Biological Curation 4000+ pathways  Collection of biclogical https./fwww. [152]
pathways pathways from 20+ pathwaycommons
databases, induding KEGG ~ org!
and Reactome
NDEx [Network Data Biological Curation Interactive database that www.ndexbioorg  [153]
Exchange) networks allows users to query,

visualize, upload, share and

Brief Bioinform . 2020 Dec 1;21(6):2066- Horma tissues e Holgcl s
GTEX GEX NGS ~11 700 Expression profiles of 53 https://gtexportal [154, 155]

2083. doi: 10.1093/bib/bbz144. T = D aimtiat oy ange oMl

~1000 individuals that can be
usad as normal controls for
» e cancer studies
o Bl fol el ek )| P ) S - - )
oa B e L B i Clin, clinical data; CNA, copy number alteration: CEX. p Mathyl, mikX. NCS, next T Typ—
phase protein array; SNV, single nucleotide variant.

NCBI PubChem

m National Library of Me
K Center fox & k

er for B

Pub@ hem About  Blog  Submit  Contact

Chemistry

ormation f uthorita source.

b

Draw Structure Uplaad 1D List Browss Data Periadic Table

https://pubchem.ncbi.nlm.nih.gov/
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2 C (d @& pubchemncbunimnih.gov

m) National Library of Medicine

National Center for Biotechnology Information

Pub@hem Abost Blog Submit  Contact

Explore Chemistry - <_J

Quickly find chemical information from authoritative sources

Browse i X

aspirin EGFR CIHE04 C1=CCmC(C=CI)C=0 INChi=15/C3H60/c1-3(2)4/M1-2H3

0

Ry LY E=

Draw Structure Upload ID List Browse Data Periodic Table

Try

https://pubchem.ncbi.nlm.nih.gov/
25
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Genomics of Drug Sensitivity in

Cancer

Downloads

What's new?

Genomics of Drug Sensitivity in Cancer S )

The functionality of the Genomics of Drug
Sensitivity in Cancer database has now
been enhanced with two new data
We have characterised 1000 human cancer cell lines and screened them with 100s of compounds. visualisations. The Combined Analyses
on this website, you will find drug response data and genomic markers of sensitivity. Volcano Plot overlays all tissue specific and
pan-cancer associations to visualize
significant biomarker associations across all
context-specific ANOVA analyses. Compare
compound plots the correlation of dose
response results (IC50 or AUC ) between

Search by drug, gene or cell line name different drugs across the cell line set.
- v
e.q. Docetaxel, RP-56976, BRAF, COLO-829
Datasets
GDSC1 GDSC2
Age
from 2010 to 2015/ NEW
Size
- 087 Cell lines 809 Cell lines
Overview 367 Compounds 18 Compounds
310904 1C50s 135242 1C50s
Assay
Resazurin or Syto60  CellTitreGlo
CDVEFEQE Duration
518 compounds targeting 24 pathways ,.‘,”' 72 hours 72 hours
A

Browse Key Publications

Compounds . o

Genomics of Drug Sensitivity in Cancer
ERK M i (GDSC): a resource for therapeutic
biomarker discovery in cancer cells.
Yang et al., (2013) Nucl. Acids Res. 41
(Database issue): D955 - D961.
(PMID:23180760 & )

Apoptos

Chramatin histon,

: WSBI SR AP YL 33| https://www.cancerrxgene.
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What's new?

Genomics of Drug Sensitivity in Cancer Relesse 8.3 (June 2020)

The functionality of the Genomics of Drug
Sensitivity in Cancer database has now

i, been enhanced with two new data
We have characterised 1000 human cancer cell lines and screened them with 100s of compounds. visualisations. The Combined Analyses

On this website, you will find drug response data and genomic markers of sensitivity. Volcano Plot overlays all tissue specific and

pan-cancer associations to visualize
significant biomarker associations across all
context-specific ANOVA analyses. Compare

compound plots the correlation of dose
[ Search by drug, gene or cell line name :f‘f:‘r’c":fd'f:;‘l‘:c(::iot:;':guch)nge;“:e“
e.g. Docetaxel, RP-56976, BRAF, COLO-829 <
Datasets
GDSC1 GDSC2
Age
from 2010 to 2015 v NEW
Size
overview 987 Cell lines 809 Cell lines
367 Compounds 198 Compounds
310904 ICS0s 135242 1C50s
Assay
® e
g“ﬂSB| L https://www.cancerrxgene.org/
D Karsan Sacety for Biainfarmatics

" PART1

— Introduction to pharmacogenomics
* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

® PART2
— Studies related to pharmacogenomics based on machine learning

PROTEIN REPRESENTATIONS

§aSBiRFeTEas
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Why protein representations are necessary?

Representation of proteins for machine-learning features that fully
captured wide ranges of properties of the target molecule

faSBigReBEA

Types of protein representations

" Protein descriptors
— Amino Acid Composition (AAC) - 20D
— Dipeptide Composition Descriptor - 400D
— Tripeptide Composition Descriptor - 8000D
— Composition, Transition and Distribution (CTD) - 147D

" Protein embedding

faSBigReTR R
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Amino Acid Composition -AAC (20D)

Amino acid compositions for unfiltered sequences from 38 organisms

amino ackl

z

78

120 381 52

ol
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BMC Research Notes volume 11, Article number: 117 (2018)

=gy stE

5.8 .
§a5Bi ¥
od Waorman Socity for Risinfarmatics

##

Dipeptide (400D) / Tripeptide (8000D)
Composition

AR RA NA DA CA EA

## 0.003565062 0.003565062 0.000000000 0.007130125 0.003565062 0.003565062

##

QA GA HA IA LA KA

## 0.007130125 0.007150125 0.001782531 0.003565062 0.001782531 0.001782531

##

MA FA PA SA TA WA

## 0.000000000 0.005347554 0.003565062 0.007130125 0.003565062 0.000000000

#H

YA VA AR RR NR DR

## 0.000000000 0.000000000 0.003565062 0.007130125 0.005347594 0.001782531

##

CR ER QR GR HR IR
## 0.005347594 0.005347594 0.000000000 0.007130125 0.001782531 0.003565062

## AAR HAas NAS LA CAan EAA

## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 O.000000000

## Qan GAA HaA TAA LAA KALN

## 0.001785714 0.000000000 0.000000000 0.000000000 0.000000000 O.00Q0000000

## MAA FAA PAA SAA TAA Was

## 0.000000000 0.000000000 0.000000000 0.001785714 0.000000000 O.000000000

## YAA VA ARA RRA NRA DRA

## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 O.000000000

## CRA ERA QRA GRA HRA IRA

## 0.000000000 0.000000000 0.000000000 0.001785714 0.000000000 O.000000000

## LRA KRA MRA FRA PRA SRA

## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 O.000000000

L CpjeReTEL s

¥aorsan Sociaty for Bioinformtics
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Getting Started with PyBioMed

This document is intended to provide an overview of how one can use the PyBioMed functionality from Python. If you find mistakes, or have suggestions for

improvements, please either fix them yourselves in the source document (the .py file) or send them to the mailing list: orental-«

gadsby@163.com.

Installing the PyBioMed package

PyBioMed has been successfully tested on Linux and Windows systems. The user could download the PyBioMed package via

hitps

You first need to install RDKit and pybel successiully.

On Windows.
(1): download the PyBioMed-1.0.zip

(2): extract the PyBioMed-1.0.zip file

raw.githubusercontent.com/oadsbyfly/ PyBioMed, master/ PyBioMed / downloac

(3): open cmd.exe and change dictionary to PyBioMed-1.0 (write the command “cd PyBioMed-1.0" in cmd shell)

(4): write the command “python setup.py install” in cmd shell

On Linux:
(1) download the PyBioMed package (.zip)
(2) extract PyBioMed-1.0.zip

(3): open shell and change dictionary to PyBioMed-1.0 (write the command “cd PyBioMed-1.0" in shell)

(4) write the command “python setup.py install” in shell

Getting molecules

The pygetrol provide different formats to get molecular structures, protein sequence and DNA sequence.

o | Bl AHDH 2] B3 S}
L CpjtRua LRy

Karaan Sociaty far Risinfarmatic

ds@163.com and

PyfioMed-1.0,zip. The installation process of PyBioMed is very easy:

ing Starte
s |nstalling the P
package

Getting molecu
= Getling

s Pretreating r
= Pretreating |
sequence
ealing [

sequence
= Calculating mol

descriptors

= Calculating
= Calculatir
descripto
functions
= Calculatr

= Pre

Composition, Transition and Distribution (CTD),

147D

Sequence M T EITASMY K EULURE A TGTG A
Sequence Index 1 5 10 15 20
Transformation 3 2 1 3 2 2 2 3 3 1 1 3 1 1 2 2 2 23 & 2

Index for 1 1 2 3 1 5
Index for 2 1 2 3 4 5 6 7 8 9 10
Index for 3 1 2 3 4 5

1/2 Transitions |
1/3 Transitions |
2/3 Transitions |

Table 1: Amino acid attributes, and the three-group classification of the 20 amino acids by each attribute

Group 1 Group 2 Group 3
Hydrophobicity Polar Neutral Hydrophobicity

R KED QN G ASTPHY CLV.LMFW
Normalized van der Waals 0-278 295-4.0 403-8.08
Volume

GASTPDC NVEQIL R
Polarity 49-6.2 8.0-9.2 10.4-13.0

LLEWCMVY PATGS H, QR K NED
Polarizability 0-1.08 0.128-0.186 0.219-0.409

G ASD,T CPNVEQLL LN
Charge Positive Neutral Negative

KR CJ N.CQGHILLMFPSTWY, DE
Secondary Structure Helix Strand Coil

EALMOKR v vcwrT G/NPS D

Solvent Accessibility

Buried Exposed

ALFECG VW RKQEND

Intermediate
M, S, P, THY

oSy

san Society for Bioinformatics

https://mran.microsoft.com/snapshot/2017-12-06/web/packages/protr/vignettes/protr.html
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: Jupyter Protein_representations Last Checkpoint 62 ¥ (unsaved changes)

B+ x @ B 4+ ¥ | HRun B |C P |Code v
miy AAUSAALOMPOS 1L 10N, LalculateaAl I pept 1deomposit ioniprotein)
print (AAD
In [ ]: ten(AAD

Using PyBioMed - CTD descriptor

in [ ]: trom PyEloMed.PyProtein impert CTD

protelin_descriptor = CTD.CalculateCTD(protein
print (protein_descriptor)

In [ ] print (len{protein_descriptor)

faSBigReBEA

A

Logout

Contral Panel

13 O

ProtVec (Asgari et al. ,PLoS ONE 10(11): 0141287, 2015)

® Continuous distributed representation of biological sequences

for deep proteomics and genomics

— ProtVec: “unsupervised data-driven distributed representation for

biological sequences”

— Each sequence represented as n-dimensional vector

* Characterizes biophysical and biochemical properties
* Determined using neural networks

woman .
|
man \ eir slower
\ father Q <on slow
cat king Oueen boy

fast
dogs France
e England longer

longest
Rome

slowest
dog \. mother é‘ faster
daughter

/ / he fastest
Paris Italy \ she long
I.ondo%

e CBj e unuay Apply to proteins as well? - ProtVec
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ProtVec

" Use large corpus of sequences to train representation
— E.g.) Swiss-Prot with 546,790 manually annotated and reviewed
sequences
— Break sequences into subsequences (i.e. biological words)
— Training of the embedding through the Skip-gram neural network
» for protein sequences: usage of a vector size of 100 and a context size of

25
* - every 3-gram is represented as a vector of size 100

Original Sequence

WD A FSAEDVLKEY DRRRRMEAL..
Splittings

1) MATF, SAE, DVL, KEY, DRR, RRM, ..

9) AFS, AED, VLK, EYD, RRR, RME, ..

3) FSA .EDV, LKE, YDR, RRR, MEA, ..

a‘»SBI AN 2 51 5} ASgarl et al. ,PLOS ONE 10(11) 90141287, 2015

®" PART1
— Introduction to pharmacogenomics
* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

® PART2
— Studies related to pharmacogenomics based on machine learning

MOLECULAR REPRESENTATION

faSBigReTR R
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Why molecular representations are necessary?

O
/ l
\N N
OZNH;B? /\ ‘

Representation of chemical compounds for machine-learning features
that fully captured wide ranges of chemical and physical properties of
the target molecule

§aoBi Ay

Types of molecular representations

" Molecular descriptors
" Molecular fingerprints

§aoBi a= eyt
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Molecular descriptors

" Molecular descriptors are numerical values that characterize
properties of molecules

" The goal of a molecular descript is to provide a numerical
representation of molecular structure

" There are numbers of molecular descripts vary in complexity
of encoded information

'®) / MW?
~ N /\
N
ﬁ ) 194.08
o) ITI N

faSBigReBEA

Molecular descriptors

HO™ ~O

- e ¥ - ~a

oD 1D 2D 3D 4D

. OO
I o §
¥ .

1) O0D-descriptors (Molecular formula, i.e. Molecular weights, atom counts, bond counts),
2) 1D-descriptors (Chemical graph, i.e. Fragment counts, functional group counts),

3) 2D-descriptors (Structural topology, i.e. Wiener index, Balaban index, Randic index,
BCUTS),

4) 3D-descriptors (Structural geometry, i.e. WHIM, autocorrelation, 3D-MORSE, GETAWAY),
5) 4D-descriptors (Chemical conformation, i.e. Volsurf, GRID, Raptor)

Grisoni F., Ballabio D., Todeschini R., Consonni V. (2018) Molecular Descriptors for Structure—Activity
__;ﬁésm@qagig@ggﬂands—On Approach. In: Computational Toxicology. Methods in Molecular Biology, vol 1800.

- 22 -




Molecular fingerprints

" Fingerprint representations of molecular structure and
properties are a particularly complex form of descriptors.
Fingerprints are typically encoded as binary bit strings whose
settings produce, in different ways, a bit “pattern”
characteristic of a given molecule.

" Fingerprints are designed to account for different sets of
molecular descriptors, structural fragments, possible
connectivity pathways through a molecule, or different types
of pharmacophores.

“vSBI SR AME AL B}3| https://doi.org/10.1016/j.ymeth.2014.08.005

Types of fingerprints

e R

Structural based Pattern-based FP MACCS, PubChem, FP3,
FP4
Topological Path-based FP Daylight, FP2
Circular FP ECFP2, ECFP4, ECFP6
Pharmacophore FP 2D pharmacophore
Neural network based Graph-based representation GNN (graph convolutional
network (GCN), graph

attention network (GAT),
gated graph neural
network (GGNN), ...)

Molecular embedding seq2seq, mol2vec

faSBigReTR R
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Pattern based fingerprints

SMARTS pattern PubChem Fingerprint

«  E7 SMARTS pattern XS 7|Et2 2 St +  PubChemOj| M H|A|Bt SIS +E2E 7|HIC 2 ot
K|S HAX} A gk K| 2 HE S X} (881 bit vector)
Key position Key description Annotation Sections Description
11 o Radoiadoladoind/ 4M Ring Section 1 (#0~#114) Hierarchic element counts
12 [Cu,Zn,Ag,Cd,Au,Hg] Group 1B, 1IB Section 2 (#115~#262) | Rings in a canonic Extended Smallest
13 (48]~ [#7](~[#6])~[#6] ON(C)C Set of Smallest Rings ring set
14 [#16] - [#16] 5s Section 3 (#263~#326) | Simple atom pairs
Section 4 (#327~#415) | Simple atom nearest neighbors
MACCS fingerprint SMARTS pattern 7| 2= & Section 5 (#416~#459) | Detailed atom neighborhoods
Section 4 (#460~#712) | Simple SMARTS patterns
v" MACCS fingerprints (166 keys)
. . Section 4 (#713~#880 Complex SMARTS patterns
v' FP3, FP4 fingerprints from OpenBabel ( ) P P
PubChem fingerprints bit2 description
=
. =Y
=l 0o oo= 11 X [ OTs o1kl
- 0|0 ZolEl ot o R & S0 W dEl= X ZHAXAZ oF 9| 7+ Z M0
- — ke | = O
T8Ot O]2lel =& HolY == Ql&
o
- SUHo 2 #Eo| ZO|7 S
OB
Path-based fingerprints
o YAXE 7|FECZE D E linear fragment & 12{ot= WA O Z ootE X A& HEHT

« 8 (hashing) ¥ D2 F S Ar2E

« 2t Fingerprints
v FP2 fingerprints (1,021 bit vector)

v" RDK fingerprints, Layered fingerprints (RDKit), CDK fingerprints (CDK)

H 0

- OHAO' C)EI-_TI_E-l%% Al--g_ol-m EI'OO':OI_I' path length =0

St TR E BEHEY = A ALEXHE g . o M

Zo| 2EE = U= E E

- T ath length =1
- O A= AIEX|AOl EHE S g e B @
- KN 2HEAHKX}LQ| resolution= Sff & \ - /

g2 50 el HetE = US pa fengn =2 : ) . )

. N, N, N, N

- Bit collision} bit space 'SH|E D24st Y ¥y o e~

ZO|[ X ZHAHAE HE A

S
°

path length=3
H H

O'IE:I% L o/ Jo i7 Ao ,N7 —~rs, (N\ (i

Zo|of w2 fragment FE A
https://docs.eyesopen.com/toolkits/python/graphsimtk/fingerprint.html#section-fingerprint-path

-
=4

faSBigReTR R
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Morgan/Circular fingerprints

« OtLfO EAHE 7|E=2 = FO| T g Lo ot 1= FEE

L
o’/\?’—o _f,_\_x|.x-| @) E EFAH ol._ 7| I:é-l
, «  6fd(hashing) 7| = AME5H £ Z0| L9
-] —_
R X SH X2 BF8iot0] Al2 3t
Diameter 0: Ideritlars:
- o
L -
- ¥ Fingerprints / g
- =276894788
v" Morgan/Circular fingerprints ~ i Diameter 2; asoszs60
v’ ECFPs (ECFP4, ECFP6), FCFPs LIV = T e W e T g, obw
J 1191519827
1687725933
Diameter 4: Addads26d
[ ) E II x* - v i - i 3 o~ i ) =252457408
C_)I; I7=<I-|o E| A X7J} OofLl Bl X 1. \( L b % Y — iéég’:iééé
- | | O—l — —_rL—'— |- |-I_ oI’Tl —_|-|-_|_O‘" S B ' " . -1104704513
St g =3t
I:H ol—l- :H-'ol—:l O| 7|- oo Identifier list rapresentation:
- 71|A|_|‘ _J_‘|\_E7|- HHI-% IZGET'IIZQ‘L"O 1216914295 79-‘:.}3676 SE??:QRE‘S 798098402 690148606 .'l’_r"l_?l??!?
= oy L 1687725053 1844205264 25 o L3t upaassy S
- HAHel 7x HEE By pr
o -~ P e [ v o
'I'r%ol-l_lh OI‘Tl ?‘—DF— ?:-IIA—}]IOHE 2 / Hash function
StS o txed-len, inal = 2
Sk e = S o A
o o
- wARG Ao A s————
ECFP fingerprint2| 4= E Xt
https://docs.chemaxon.com/display/docs/Extended+Connectivity+Fingerprint+ECFP
la® | BHANGH A 5 5}
> Jupyter Generate_FPs Last Checkpoint 42 3 (autosaved) I Logout | Cantral Panel

File Edit View Insen @ Keme Widgets

B + x @ B 4+ % | HRun B C B Code v| | =

1. Using RDKkit
Descriptors, MACCSkey, Morgan

In [ ]: from _future_ import absolute_import
Import rdklt
from rakit import Chem
from rdkit. Chem import rdMolDescriptors # Module co
from rakit.Chem import Descriptors
import rdkit.rdBase
from rdkit.Chem. MACCSkeys import GenMACCSKeys
from rdkit Chem import AllChem
from rdkit.Chem import Draw

W = Chen, MolFromSn| 1es("CN1C=NE2=C1G(=0)N(C(=0IN2T)C") # caffine

from rdkit.Chem. Oram import IPythonConsole #leedes ]
from rdkit.Chem. Draw. MolDrawing import Mull]rawmu Drawmaﬂmmna
Smatplotlib inline

m

=]

rdMo|Descriptors. CalcExactMo Wt (m) #

In [ ]: Descriptors.MollLogP(m)
In [ ]: rdmolDescriptors.CalcMolFormulalm) # refurns (he molecule
In [ ]: | rdwolDescriptors,CalcNusHBA(m) # returns the number of H-bond acceplors fer a molecule

ta T 1. | mdba i Ramsciatama fadskbminnfad o

§aoBigRYIR=a

Python

30
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GNN

Graph neural networks (GNNs) are

connectionist models that capture
the dependence of graphs via
message passing between the nodes
of graphs.

— can embed the drug(molecule) into
vectors which has topological structure
information with edge and atom features

i
|
[

(a) 2D Convolution. Analogous
to a graph, each pixel in an image
is taken as a node where neigh-
bors are determined by the filter
size. The 2D convolution takes
the weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of a
node are ordered and have a fixed

Extract features by considering the
structure of the data

7
'S
N/

PaN>:

i>\|\ /|

X!
X[
X

Enables automatic feature extraction
from raw inputs

1
@
—

(b) Graph Convolution. To get a
hidden representation of the red
node, one simple solution of the
graph convolutional operation is
to take the average value of the
node features of the red node
along with its neighbors. Differ-
ent from image data, the neigh-
bors of a node are unordered and

variable in size.

e With end to end learning, the size.
model can learn data driven
features

Fig. 1: 2D Convolution vs. Graph Convolution.
https://arxiv.org/abs/1901.00596

faSBiRReREEns

Graph Neural Network

"  Message Passing : aggregate information from neighbors

ml(,t“) = message_passing({h&f) ,Yw e N(v)})
" Update : with message passing, update the hidden representation
hi+l = ypdate(mT+, n(D)
® Readout : represent graph with all hidden representations
httt = readout(hLtl, vv € G)
R0 =X,
N(v) : set of nodes adjacent to v
hg:) i+
T ® GNN Layer — Readout
hy hi*!
m — | = ) (1
h Message passing h
hgt] .. o Update hr’.}ﬂ O [ | Graph
u hs . hs representation
% - Wl m
HE = u
hg’-) hg+]
[ | ] |

52

OB ERae s R : hidden embedding vector of node v at t-th GNN layer

- 26 -




Graph Neural Network

"  Message passing

Message : Information that flows between neighbors and the target node

— message_passing : function that aggregate neighbor information of target node at t
time step with propagation rule

t+1 ;
mf} D _ message_passing ({h&f) ,Yw € N(v)})
a ™
= =m <ﬂ L
(t) -
Target node h2 - Sl
\ (t) - ny™Y
p©® N | 3 4 s
( (t-1)
o o .
(t) || |
h{ ™ (¢-1)
e WO n
hg? i
[ mgtﬂ) = message_passing({hgt) ,hff), hét)y
s SB SR gee -

Graph Neural Network

" Update

— update : function that update the t+1 time step hidden representation with t time step
node representation and message passing

hi+l = ypdate(mT+, n(D)

4 A0

H Em
(t)
Target node b
\ (t)
) hs He
h"}
| hy?
0] L]
6
HE =
A
" mgtﬂ) = message_passing({hét) ,hit), hét)})
het = update(m{+Y, h{P)
2 SBi ¥R e ”

-27-




Graph Neural Network

® Readout

— readout : function that represent the graph calculated by all hidden

representations

— hEt = readout(ht,vv € G)

/ h§+1
N
h5+1
H
h§+1
h4t1-+1 . .
HEN hEt?
. h£+1 .
h5+1

h]t-+1
h§+1 .
A HE |

Rt = readout( by WEEME ) =
e
hé—l—l -
h_§+1 .

~

/

faSBigReEEEAE

Graph Neural Network Models

®  Semi—Supervised Classification with Graph Convolutional Networks (GCN)

® Inductive Representation Learning on Large Graphs (GraphSAGE)

® Neural Message Passing for Quantum Chemistry (MPNN)

®  Graph Attention Networks (GAT)

" How Powerful Are Graph Neural Network? (GIN)

® Analyzing Learned Molecular Representations for Property Prediction

(DMPNN)

— Various Message passing, Update, Readout function

faSBigReTR R

56
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To be continued.

4
2 BR
3

@ . B AHOH 2 &}
SR ERBLRas

Contents

" PART1
— Introduction to pharmacogenomics
* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

" PART2

— Studies related to pharmacogenomics based on machine learning

L] > AHCH 2 & &)
OB aR ey
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CYP450 VARIATIONS AND DRUG
RESPONSES

faSBigReBEA

Pharmacogenomics and drug metabolism

" A patient’s genetic makeup and their response to
pharmaceutical drugs are seen with regards to their
metabolism

Ultra-rapid Normal Poor
Metabolizer Metabolizer Metabolizer
Under-dosed: Expected Over-dosed:
. Adverse drug
Lack of efficacy response .
reactions

faSBigReTR R
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Cytochrome P450 enzymes

" The super-family of cytochrome P450 enzymes has a crucial
role in the metabolism of drugs

" CYPs are the major enzymes involved in drug metabolism,
accounting for about 75% of the total metabolism

" Most drugs undergo deactivation by CYPs, either directly or by
facilitated excretion from the body

CYP3A4[S ] 36%
(S 1T 3 —— ]

ovPacg/s ] 16%

(o3 T 2 — 51

[ 1w L m— 1

ovP2El [0 4%

CYPIBE | | £

cvprae T 3%
% S 1% 1% 0% 2% 0% 3% 0% asw 5o
e.g. ) Proportion of antifungal drugs metabolized by different families of CYPs.

"'ijBi sRmaesE  https://en.wikipedia.org/wiki/Cytochrome_P450#Drug_metabolism

CYP450 isozymes

" Humans have 57 genes and more than 59 pseudogenes

divided among 18 families of cytochrome P450 genes and 43
subfamilies

Family | Funclion

paeudogenes
drug and steroid (especially estrogen] metabolism, benzoldlpyrens
[a7] s 3 h i oYem
tomfic afgryrenc. 7 8-dilydrodiol-9,10-epoxide)
CYP2 | drug and steroid mesabolism Too many to Hst
CYP3AS1P, CYPIAS2P,
CYP3 | drug ane 1 Ginclud 1

CYPIASHP, CYPIATITP
CYP4 | arachidonic acid or fatty acid metabolism Too many to hst
CYPS | thrombowane A synthase g
CYPT | bile acid biosynthesis T-alpha hydrouylase of steroid nucleus subfami gen PTB1
CYPE | vanied

CVP11 | stereid Bisgynthatie

CYP17 | storoid biosynthesis, 17-alpha hydroxylase

CYP19 | sterosd biosymthesis: aromatase synthesizes estrogen

CYP20 | unknown function

1 subfamilies, 1
CYP21 | sterced bicsynthesis s .

1 preudogene
CYP24 | vitamin D degradanon 1 subfamily, 1 gene
CYP26 | retingic acid hydroxylase 3 subfamilies, 3 genes | C
2781 (vitamin D3 1-alpha hydroxylase,
CYP2T | vaned 3 subfamilies, 3 gen ; bl
{unknown function)

CYP39 | T-alpha hydroxylaton of 24-hydrexychelesternl 1 subfamily. 1 gens

1 subfamily, 1 gene, 1
CYP46 | cholesteral 24-hydronylase bl CYPdsAL CYPAEAIP

prewdogene

: 1 subfamily, 1 gene, 3 N CYPS1P1, CYPSIP2

CYP51 | cholestorol biosynthesis CYPR1AT (lanosterol 14-alpha demethylase) e

proudogenos

u:SBI saouess  https://en.wikipedia.org/wiki/Cytochrome_P450#Drug_metabolism
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CYP2D6 alleles

CYP2D gene locus .
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-
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Mormal-function alleles
(e.g., "1, "2 and "35)
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Low-function alleles
(e.g., *10, *17 and *41)

MNull-function alleles
{e.g., 8,74, "5, "6, 7,
*8, *12, *13, *14, *15,
*16, *18, *19, *20, *21,
*38 and so0 on)

https://www.futuremedicine.com/doi/10.2217/fmeb2013.1
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Related study:
prediction of CYP2D6 haplotype function

Transfer learning enables prediction of
CYP2D6 haplotype function

Gregory Mcinnes ', Rachel Dalton 2’3, Katrin Sangkuhl 4, Michelle WhirI-CarriIIo4,

Mala Data
Seung-been Lee(®, Philip S. Tsao®”, Andrea Gaedigk®®°, Russ B. Atman*%%, Erica s s w2 I —ris
L. Woodahl®?* Bl
f—iﬁ
Srwriy e Valwaber daie ey
W v [ R B 7 it
W o
B. Cata formatiing

D.Conversion of ordiral scones lo
functionsl classes

,,.

Fre

Rarctional prediction

)

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
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haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399
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Related study:
prediction of CYP2D6 haplotype function

" CYP2D6 is an enzyme expressed in the liver that is responsible
for metabolizing more than 20% of clinically used drugs

" More than 130 haplotypes comprised of single nucleotide
variants (SNVs), insertions and deletions (INDELs), and
structural variants (SVs) have been discovered and catalogued
in the Pharmacogene Variation Consortium

faSBigReBEA

Related study:
prediction of CYP2D6 haplotype function

" |nput

A CYPZDE Star Allele Data
— CYP2D6 Full genomic sequence (one hot | s | . N
Vector) valdation sels
— 9 annotations (one hot vector) R | Iy | s
* Coding region, rare variants, deleterious, e IS s
INDEL, methylation mark, DNase B, Dota ormating :
hypersensitivity, TF binding site, @QTL, aCtiVE S onareceoter sapares = o e
site
& Funesionsl prodiction gty
" Output z=m | -O
— Haplotype activity (No, Reduced, Normal o _ 3 IS ’_ )
activity) : '
D.Conversion of ordinal scores 1o e
" Data e ©
L. 3 . Output: CYPZDE functional prasdiction prieg
— Pre-training with 50,000 randomly selecting ® .. —

a pair of CYP2D6 star alleles with curated

function, Pre-training with 314 in vivo data .

— Fine-tuning with PharmVar data
" Model-3CNN+2FC

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
* haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399
piSBigRaaLuy MOV sl i BTy
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Hubble.2D6 Results Predicted function for uncurated alleles
a Training predictions p Validation predictions
Accuracy: 100% Accuracy: 88%

=
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Fig 2. Star allele classification results. The figure depicts performance metrics for the prediction of star allele function in the training and validation sets; confusion
matrices for class prediction in training and validation are shown in (a) and (b), for Hubble.2D6 and in (c) and (d) for the baseline model. (e) shows the frequency of
predicted function for uncurated star alleles.

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399
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Fig 3. Prediction of star allele function with in vifro data. The figures summarize the distribution of metabolic activity measured in vitro for star alleles whose function
was predicted by Hubble. The distribution of functional activity is shown in (a) and (b) for star alleles with CPIC-assigned clinical function assignments. (a) star alleles
included in the training process are depicted with a triangle, and those held for testing are depicted with a circle. Error bars depict the standard error of the measured
function. The outer edge of each point indicates the true, curator-assigned phenotype, while the inner color represents predicted function. (b) distribution of values for
each predicted functional class for data shown in (a). (c) star alleles without assigned function status; colors represent the predicted function. (d) variance in measured
activity of the star alleles for each predicted label for data shown in (c).

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399
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GENETIC VARIATIONS AND DRUG
RESPONSES
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Related study:
prediction of cancer cell sensitivity to drugs

= Genomic features
— MSI, variations, CNV

= Simple neural network

OPEN & ACCESS Freely available online @PLOS | one

Machine Learning Prediction of Cancer Cell Sensitivity to
Drugs Based on Genomic and Chemical Properties

Michael P. Menden', Francesco lorio’?, Mathew Garnett?, Ultan McDermott?, Cyril H. Benes®,
Pedro J. Ballester'*, Julio Saez-Rodriguez'*
1 Ewropean Bioinformatics Institute, Wellcome Trust Genome Campus-Cambridge, Cambridge, United Kingdom, 2 Cancer Genome Project, Wellcome Trust Sanger

Institute, Wellcome Trust Genome Campus—Cambridge, Cambridge, United Kingdor, 3 Center for Molecular Therapeutics, Massachusetts General Hospital Cancer Center
and Harvard Medical School, Charlestown, Massachusetts, United States of America

Experiments Cell line features
Neural network Prediction
@7 Microsatellites
2 Sequence varation fant o A
|||l Copy number variation feat = V% :
s & Q IC,
——————————————————————————————————— feat;C “Y( g 7 <
OC Physicochemical: lipophilicity j
0C1= weight, rule of five, etc. dr )
(OC. Fingerprints: CDK, PubCham, ke
PaDEL- Klekota-Roth, Estate, etc
SMILES Descriptor Drug features

Menden, Michael P., et al. "Machine learning prediction of cancer cell sensitivity to drugs based on genomic and
«‘jSBI s_};}gcg:gﬂ,lﬂ chemical properties." PLoS one 8.4 (2013): e61318.
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Related study:
prediction of cancer cell sensitivity to drugs
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Figure 2. Comparison of single-drug models and the multi-drug model. The performance of the multi-drug model (red asterisk) and the
family of 111 single-drug models (blue histogram) is represented using three different metrics: (A) Pearson correlation Ry, (B) coefficient of

determination R?, and (C) root mean square error RMSE.
doi:10.1371/journal.pone.0061318.g002
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*  Genomics of Drug Sensitivity in Cancer (GDSC) project
*  mutational status of 77 oncogenes
* 639 cancer cell lines

* 67,488 possible drug response
*  8-fold cross-validation

Menden, Michael P., et al. "Machine learning prediction of cancer cell sensitivity to drugs based on genomic and

chemical properties." PLoS one 8.4 (2013): e61318.
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Related study:
prediction of cancer cell sensitivity to drugs

CIENTIFIC REPg}RTS

OFEN Cancer Drug Response Profile scan
(CDRscan): A Deep Learning Model
That Predicts Drug Effectiveness
from Cancer Genomic Signature

“YoosupChang?®, Hyejin Park’, Hyun-lin Yang?, Seungju Lee’, Kwee-Yum Lee™,
TaeSoon Kim**, Jongsun Jung® & Jae-MinShin*

GDSC

28,328 mutation positions in 567 genes
787 cell lines

244 drugs
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Chang, Yoosup, et al. "Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug
Effectiveness from Cancer Genomic Signature." Scientific reports 8.1 (2018): 8857.
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Related study:
prediction of cancer cell sensitivity to drugs

a
CDRscan (mean of five models) Random Forests SVM
18 R?=0.843 Lo R%=0.698 L R%Z=0.562
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°

multi-fold cross validation (five-fold with each fold)

_,eSB- B AN A B 51| Chang, Yoosup, et al. "Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug
- | et sSaente mantornta Effectiveness from Cancer Genomic Signature." Scientific reports 8.1 (2018): 8857.
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Prediction of drug-target interaction

Imatinib

2° CD; SR AHDI 4 b1 5}
faoBigRYzEAs

BCR/ABL fusion protein

DTI prediction using protein descriptors

Large-Scale Prediction of Drug-Target Interactions

from Deep Representations

Peng-Wei Hu Keith C.C. Chan Zhu-Hong You
Department of Computing
Hong Kong Polytechnic University
Hung Hom. Kowloon
Hong Kong
{esphu, eskechan, csyehuhong Ji@comp.polyu.cduhk

MFDR employed stacked Auto-Encoder(SAE) to abstract
original features into a latent representation with a small
dimension. With latent representation, they trained a
support vector machine(SVM), which performed better
than previous methods, including feature-and similarity-
based methods.

Chan, Keith CC, and Zhu-Hong You. "Large-scale prediction of drug-

target interactions from deep representations." Neural Networks
(IJICNN), 2016 International Joint Conference on. IEEE, 2016.

T.® CD | Bl AHD 2 5 5t
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Y
Stacked
Auto-Encoder

'
Support Vector
Machine

Multi-scale features deep representations
inferring interactions (MFDR)
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DTI prediction using protein descriptors
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interactions from deep representations." Neural Networks (I/CNN), 2016
International Joint Conference on. |EEE, 2016.

DTI prediction using protein sequence

Bioinformatics, 34, 2018, 1821829
doi: 10.1093/bisinformatics/bty593
ECCB 2018

OXFORD

DeepDTA: deep drug-target binding
affinity prediction

Hakime Oztiirk?, Arzucan Ozgiir'* and Elif Ozkirimli®*

= Model
— Input — Protein sequence, SMILES
— Output — Binding affinity
— Model — CNN for protein, DNN for drug

=  Contribution

— first used CNN to learn representations
of proteins
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Fig. 2. DeepDTA model with two CNN blocks to learn from compound
SMILES and protein sequences
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DTI prediction using protein sequence
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* Compare pooled convolution result with binding sites from sc-PDB

A Protein and ligand B Binding site and ligand
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Cc Protein and ligand D Binding site and ligand
of 1ny3_1 of 1ny3_1
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Number of convolution results covering residue
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’ Lee I, Keum J, Nam H (2019) DeepConvDTI: Prediction of drug-target interactions via deep learning with convolution on protein
2® B AN A B 5t ’ ’
g.QSBl o“'ﬂ#,ﬁf’nin:%l sequences. PLoS Comput Biol 15(6): €1007129. https://doi. org/10.1371/journal.pcbi.1007129
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Fig. 1. HoTS model overview. HoTS considers amino acid sequences of individual proteins and Morgan/circular fingerprints of drug compounds. Therefrom, local residue patterns are
extracted by a convolutional neural network, and maximum values are pooled from each protein grid. Compound and protein grids are taken into transformers to model interactions between
local residue patterns and individual compounds. After passing the transformers, a compound token is used to predict DTIs. and individual protein grids are used to reflect binding regions

(BR). For DTI prediction, HoTS calculates a prediction score Ppry ranging from 0 to 1 and center (C), length (W), and confidence (P) scores for binding regions.

Ingoo Lee, Hojung Nam*, "Sequence-based prediction of binding regions and drug-target interactions", Under review.
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Fig. 3. Prediction and visualization of binding regions on 3D-complexes. A) Predicted

binding regions for drug-target interactions between HDAC2 _HUMAN and N-(4-amino-
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biphenyl-3-yl)benzamide (LLX). B) Visualization of predicted binding regions on the 3D
complex of human HDAC2 complexed with LLX (Protein Data Bank: 3MAX). C) Pre-
dicted binding regions between GNAS2_BOVIN and 5’-g ine-diphosph hi-

} o

Fig. 4. Prediction performance for drug-target interactions in the independent test

datasets.

ophosphate (GSP). D) Visualization of predicted binding regions on the 3D complex of
bovine GNAS2 complexed with GSP (Protein Data Bank: 1CUL).

2o SBI S ACI A Bt Ingoo Lee, Hojung Nam*, "Sequence-based prediction of binding regions and drug-target interactions", Under review.
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GENE EXPRESSION AND DRUG
RESPONSE
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Related study:
prediction of cancer cell sensitivity to drugs

DeepDSC: A Deep Learning Method to
Predict Drug Sensitivity of Cancer Cell Lines

Min Li, Yake Wang, Ruiging Zheng, Xinghua Shi, Yaohang Li, Fang-Xiang Wu, and Jianxin Wang

.®

« GDSC, CCLE a
* Transcriptomic feature

)
)

=

* Morgan fingerprint -

* Autoencoder based feature extraction

L = = +
"l Q
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Li, Min, et al. "DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines." IEEE/ACM
L® SBI AN A 5 53 transactions on computational biology and bioinformatics (2019).
od Worean Society for Bioinformatics
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Related study:
prediction of cancer cell sensitivity to drugs

method NN KBMF RF DeepDSC

v EMSE 0.83 0.83+/- 0.75+/- 0.52+/-0.01
1.00 0.01

R: 0.72 0.32+/- 0.74+/- 0.78+/-0.01
0.37 0.01

LOTO RMSE 0.99 MA 0.81+/- 0.64+/-0.05
0.16

R: 0.61 NA 0.72+/- 0.66+/-0.07
0.08

LOCO  RMBSE NA 0.85+/- 1.40+/- 1.24+/0.74
041 0.80

R: NA 0.52+/- 0.13+/- 0.04+/-0.06
0.37 0.11

 10-fold cross-validation
* Better performance than typical machine learning methods

* Deep learning based feature extraction

Li, Min, et al. "DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines." IEEE/ACM
F:.,; SBI Eﬁ.‘%%‘l’é 5—'5—'.‘§| transactions on computational biology and bioinformatics (2019).

Related study:
prediction of cancer cell sensitivity to drugs
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* TCGA for pre-training .
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* GDSC for response prediction network
* Using both of genomic and transcriptomic feature

* Autoencoder based feature extraction R

Predicted ICgq values

Chiu, Yu-Chiao, et al. "Predicting drug response of tumors from integrated genomic profiles by deep neural networks."

°ESB| S ACI A Bt BMC medical genomics 12.1 (2019): 18.
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Related study:
prediction of cancer cell sensitivity to drugs

Measurernent DeepDR Linear regression SVM Random initialization Eenc ONly Mepe only
Median MSE in testing samples® 1.96 10.24° 8.92° 230 1.96 3.09
Median number of training epochs® 14 - - 9 17 a5
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* Samples with mutation showed significantly different result compared

to non-mutated samples

Chiu, Yu-Chiao, et al. "Predicting drug response of tumors from integrated genomic profiles by deep neural networks."
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Figure 1. Multimodal end-to-end architecture of the proposed
encoders. General framework for the explored architectures. Each
model ingests a cell—compound pair and makes an IC50 drug
sensitivity prediction. Cells are represented by the gene expression
values of a subset of 2128 genes, selected according to a network
propagation procedure. Compounds are represented by their SMILES
string (apart from the baseline model that uses 512-bit fingerprints).
The gene-vector is fed into an attention-based gene encoder that
assigns higher weights to the most informative genes. To encode the
SMILES strings, several neural architectures are compared (for details
see section 2) and used in combination with the gene expression

Encoded SMILES or FPs

SMILES Encoders

SMILES Embedding

SMILES:[.CCOHNCCCCIH..]
or
[ 00000000010 ... 00000000010 ]

encoder in order to predict drug sensitivity.

Manica, Matteo, et al. "Toward explainable anticancer compound sensitivity prediction via multimodal attention-based
convolutional encoders." Molecular Pharmaceutics (2019).
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75 | standardized RMSE = 0.0457
RMSE = 0.887
50 Pearson = 0.9284
R2 = 0.8619
= n = 16064
g 25
-
g
High E 0.0 =
@
=
Attention g‘ =25
Weight -
-5.0
Low
-75
=75 =50 =25 0.0 25 5.0 7.5
log(Predicted 1C50)
& Encoder tv Drug Standardized RMSE
neoder type structure Median + IQR
Deep baseline (DNN) Fingerprints 0.122 £ 0.010
. Bidirectional recurrent (bRNN) SMILES 0.119 £0.011
Stacked convolutional (SCNN) SMILES 0.130 £ 0.006
Self-attention (SA) SMILES 0.112* £ 0.009
Contextual attention (CA) SMILES 0.110* 4+ 0.007
Multiscale convolutional attentive (MCA) SMILES 0.109* £+ 0.009
MCA (prediction averaging) SMILES 0.104%% + 0.005

" PART1

Contents

— Introduction to pharmacogenomics

* Drug discovery and development

— Key data sources

— Representations of proteins, chemicals

" PART2

— Studies related to pharmacogenomics based on machine learning
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