KSBi-BIML 2023

Bioinformatics & Machine Learning(BIML) Workshop for Life Scientists, Data Scientists, and Bioinformatians

생물정보학&머신러닝 워크샵(온라인)

a

Introduction to genome-wide association studies

원홍희_성균관대학교

본 강의 자료는 한국생명정보학회가 주관하는 BIML 2023 워크샵 온라인 수업을 목적으로 제작된 것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다.

이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없으며 만약 이러한 사항을 위반할 경우 발생하는 **모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고**합니다.

KSBi-BIML 2023

Bioinformatics & Machine Learning (BIML) Workshop for Life Scientists, Data Scientists, and Bioinformatians

안녕하십니까?

한국생명정보학회가 개최하는 동계 교육 워크샵인 BIML-2023에 여러분을 초대합니다. 생명정보학 분야의 연구자들에게 최신 동향의 데이터 분석기술을 이론과 실습을 겸비해 전달하고자 도입한 전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하여 올해로 9차를 맞이하게 되었습니다. 지난 2년간은 심각한 코로나 대유행으로 인해 아쉽게도 모든 강의가 온라인으로 진행되어 현장 강의에서만 가능한 강의자와 수강생 사이에 다양한 소통의 기회가 없음에 대한 아쉬움이 있었 습니다. 다행히도 최근 사회적 거리두기 완화로 현장 강의가 가능해져 올해는 현장 강의를 재개 함으로써 온라인과 현장 강의의 장점을 모두 갖춘 프로그램을 구성할 수 있게 되었습니다.

BIML 워크샵은 전통적으로 크게 인공지능과 생명정보분석 두 개의 분야로 구성되었습니다. 올해 AI 분야에서는 최근 생명정보 분석에서도 응용이 확대되고 있는 다양한 심층학습(Deep learning) 기법들에 대한 현장 강의가 진행될 예정이며, 관련하여 심층학습을 이용한 단백질구조예측, 유전체 분석, 신약개발에 대한 이론과 실습 강의가 함께 제공될 예정입니다. 또한 싱글셀오믹스 분석과 메타유전체분석 현장 강의는 많은 연구자의 연구 수월성 확보에 큰 도움을 줄 것으로 기대하고 있습니다. 이외에 다양한 생명정보학 분야에 대하여 30개 이상의 온라인 강좌가 개설되어 제공되며 온라인 강의의 한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 특히 BIML은 각 분야 국내 최고 전문가들의 강의로 구성되어 해당 분야의 기초부터 최신 연구 동향까지 포함하는 수준 높은 내용의 강의가 될 것입니다.

이번 BIML-2023을 준비하기까지 너무나 많은 수고를 해주신 BIML-2023 운영위원회의 남진우, 우현구, 백대현, 정성원, 정인경, 장혜식, 박종은 교수님과 KOBIC 이병욱 박사님께 커다란 감사를 드립니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 현장 강의와 온라인 강의를 준비하시는데 노고를 아끼지 않으신 모든 연사분께 깊은 감사를 드립니다.

2023년 2월

한국생명정보학회장 이 인 석

Introduction to genome-wide association studies

전장유전체연관분석(GWAS, genome-wide association studies)은 인간 질병이나 형질과 연관된 유전 변이를 발굴하고 유전적 조성을 규명하는 대표적인 연구 방법론이다. 그 동안 전세계에서 진행된 대 규모 GWAS 연구들은 다양한 형질과 연관된 유전 변이를 발굴하였고 이러한 변이들은 형질의 유 전력을 상당 부분 설명하게 되었다. 나아가, 대규모 GWAS 분석 결과(GWAS summary statistics)가 공유됨에 따라, 유전력(heritability), 질병 간 유전적 상관성(genetic correlation), 다인자유전점수 (polygenic risk score), 멘델리안 무작위법(Mendelian randomization) 등 여러 post-GWAS 분석이 가능하게 되었고 질병의 유전적 조성을 이해하는데 핵심적인 정보를 제공하고 있다.

본 강의에서는 GWAS를 중심으로 한 유전체 분석의 배경, 이론 및 분석 방법론 등을 소개하고, 복 합 질환에서 최근 GWAS 연구 결과를 소개하고자 한다. 이를 통해 GWAS 기반의 연구를 해석하 기 위한 기초 지식을 쌓고, 나아가 GWAS 분석 및 GWAS 결과의 응용 연구를 위한 핵심 역량을 갖추는 것을 목표로 한다.

강의는 다음의 내용을 포함한다:

- 유전체 분석을 위한 개념
- GWAS 분석의 이론과 방법론
- Post-GWAS 분석의 이론과 방법론
- 대표적인 연구 결과의 소개

* 참고강의교재:

Tam et al. Benefits and limitations of genome-wide association studies, Nature Reviews Genetics, 20:467-484, 2019.

Balding. A tutorial on statistical methods for population association studies, Nature Reviews Genetics, 7:781-791, 2006.

이종극, 질병 유전체 분석법 3판

* 강의 난이도: 초급

* 강의: 원홍희 교수 (성균관대학교 삼성융합의과학원)

Curriculum Vitae

Speaker Name: Hong-Hee Won, Ph.D.

Personal Info					
Name	Hong-Hee Won				
Title	Associate Professor				
Affiliation	Sungkyunkwan University				
► Contact Information	ation				
Address	81, Irwon-Ro, Gangnam-Gu, Seoul, 06351				
Email	wonhh@skku.edu				
Phone Number	010-6326-3452				

Research Interest

Population genomics, genome-wide association study, polygenic risk score

Educational Experience

2002	B.S. in Computer Science, Yonsei University, Korea
2004	M.S. in Computer Science, Yonsei University, Korea
2011	Ph.D. in Bioinformatics, KAIST, Korea

Professional Experience

2004-2012	Research Scientist, Samsung Biomedical Research Institute and Samsung Medical
	Center, Korea
2012-2015	Research Fellow, Massachusetts General Hospital, Harvard Medical School, and
	Broad Institute of MIT and Harvard, USA
2016-2020	Assistant Professor, Sungkyunkwan University, Samsung Medical Center, Korea
2020-	Associate Professor, Sungkyunkwan University, Samsung Medical Center, Korea

Selected Publications (5 maximum)

- 1. Kim S, et al. Shared genetic architectures of subjective well-being in East Asian and European ancestry populations, Nature Human Behaviour, 6(7):1014-1026, 2022.
- 2. Kim M, et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies, European Heart Journal, 42(34):3388-3403, 2021.
- 3. Khera AV, et al. Association of rare and common variation in the lipoprotein lipase gene with coronary artery disease, Journal of the American Medical Association JAMA, 317(9):937-46, 2017.
- 4. Do R, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction, Nature 518:102-106, 2015.
- 5. Stitziel NO, et al. Inactivating mutations in NPC1L1 and protection from coronary heart disease, New England journal of medicine NEJM, 371(22):2072-2082, 2014.

Introduction to genome-wide association studies

원홍희, Ph.D. <u>honghee.won@gmail.com</u> 성균관대학교 삼성융합의과학원 삼성서울병원

The Human Genome

- Instruction manual for human cells
- A book with 3.2 billion letters in 23 chapters or chromosomes

- 20,000 genes, exome (1% of the genome)
- 99.9% identical, 4 million letters are different
 Variation, variant, mutation, polymorphism

Genetic variation affects phenotype

• Genetic variants

(and risk for disease)

- Pathogenic variants
 - Disease-causing, deleterious, damaging
 - Usually rare (<1%)
 - Often, referred to as "Mutations"
- Neutral variants
 - Non-disease causing, but may affect disease susceptibility
 - Usually common (>5%)
 - Often, referred to as "Polymorphisms"
 - SNP (single nucleotide polymorphism)

누구나 수백만의 germline 유전 변이를 갖고 있다.

- Single nucleotide variants (SNV)
 단일 염기 변이 : 4백만개/사람
- 일생동안 변하지않는다

- Multi-nucleotide variants
 - Small insertions/deletions (indels) : 50만개/사람
 - Large copy number variants (CNVs)
 - Inversions
 - Translocations
 - Aneuploidy

AAATAGCACCGTTAGC AAATAGCCCCGTTAGC SNV 예 AAATAGCACCGTTAGC AAATA----GTTAGC

indels 예

1000 Genomes Project

 Sequenced the genomes of 2,504 individuals from 26 populations in Africa (AFR), East Asia (EAS), Europe (EUR), South Asia (SAS), and the Americas (AMR)

Genome-wide association study (GWAS)

Summary of GWAS analysis and tools

- Quality control
 - Sample QC: PLINK
 - Variant QC: PLINK
 - Related samples: KING
 - PCA of genetic ancestry: EIGENSTRAT(smartpca)
- Imputation
 - Haplotype Reference Consortium: Michigan Imputation Server
 - TOPMed Imputation Server
- Association analysis
 - Logistic/linear regression (unrelated): PLINK
 - Mixed effects regression (including related): SAIGE, BOLT-LMM, REGENIE
- Visualization
 - QQ plot: CM-PLOT
 - Manhattan plot: CM-PLOT

SNP arrays provide fast and accurate genotyping of about a million of genetic variants

Illumina genotyping software

GenomeStudio 2.0 - Genotyping - GenotypingPro

iraş	h Heat Map		800	- 14		4 Þ.	K Fu	I Data Table SNP Table	Paired Sampl	e Table		6.101	* * *	a a 14								
L				+=+ 1+				- AK [[-] -] -] -] -] -] -] -] -]		H V	. H C	1.04 1.00	1 158 1					_			_	
1.8	F	AHS-E	FGL-BAC-1	805														50% 199980200	ple 1 13_R06C02			39998
1.6			-				In	lex Name	Address	dv	Position	GenTrain Score	Frac A	Frac C	Frac G	Frac T	GType	Score	Theta	R	GType	Sco
1.4	-)		2	2	ARS-EFGL-BAC-11805 ARS-EFGL-BAC-32402	5574	12	14944031 13277993	0.8561	0.270	0.205	0.262	0.262	88 88	0.8914	0.9501 0.9578	1.1639	AA AB	0.69
	1			.)	- 2		3	ARS-BFGL-NGS-10291	7062	5	24512405	0.8500	0.230	0.238	0.279	0.254	68	0.8842	0.9557	1.2678	EB	0.88
-	1.5		2.00	1	- 4	•	4	ARS-BFGL-NG5-10380	7 6670	13	60266373	0.9003	0.180	0.230	0.287	0.303	88	0.9364	0.9420	0.9843	AB	0.93
1	T		-	_			5	ARS-BFGL-NGS-10777	3160	6	110265558	0.8509	0.270	0.156	0.254	0.320	AA	0.8854	0.0624	0.9190	AB	0.88
1	N					×.	6	ARS-BFGL-NGS-11236	3 7061	4	43355786	0.8222	0.197	0.311	0.172	0.320	58	0.8481	0.9589	1.2771	88	0.84
'n							7	ARS-BFGL-NG5-11310	5 5060	11	76012206	0.6768	0.287	0.205	0.295	0.213	AD	0.9161	0.5007	1.1303	60	0.91
7							8	ARS-BFGL-NGS-11452	4 1265	2	130850007	0.7872	0.148	0.377	0.230	0.246	68	0.7955	0.9624	1.7274	AB	0.79
61	-						2	APS-EPGL-WGS-11535	1273	2	133816808	0.8568	0.230	0.287	0.344	0.139	AA	0.8923	0.0673	1.2720	AB	0.85
							10	ARS-BEGL-NGS-11742	2 5963	1	3755210	0.7972	0.238	0.221	0.262	0.279	00	0.8113	0.9420	1.3670	00	0.8
							11	ARC-8PGL-NGS-20681	7463	15	62669465	0.9087	0.262	0.279	0.262	0.197	AD DO	0.9435	0.5355	1.0147	AD ED	0.9
							11	ADC.86/0.4/05-27516	53/3	10	24202101	0.0015	0.246	0.369	0.200	0.200	44	0.9100	0.9047	1 2000	00	0.7
Ņ							100	ADE 86(2) AV25 56163	E160	12	82202896	0.7613	0.402	0.230	0.199	0.190	44	0.7007	0.0190	1.4100	60	0.9
1							15	APS-8FG -NOS-57870	5076	2	37813654	0.7963	0.328	0.279	0.246	0.148	AR	0.8098	0.4508	1.5171	00	0.8
١	10		10		1	0	16	APS-REG -NOS-SROKE	6976	3	02006164	0.7831	0.205	0.213	0.221	0.361	10	0.7889	0.9379	1.3693	AB	0.7
	10		10			3	17	APS-REG -NOS-6559	1763	6	114594935	0.9309	0.123	0.361	0.320	0.197	40	0.9604	0.4943	0.0276	40	0.9
		1					18	ARS-REGL-NGS-76621	3261	26	50877495	0.8446	0.262	0.295	0.246	0.197	68	0.8776	0.9538	1.0400	AB	0.8
	0	0.20 0.	40 0.60	0.0)	1	19	AR5-8FGL-NG5-8820	4561	22	5651405	0.8892	0.262	0.221	0.213	0.303	68	0.9263	0.9503	1.2512	68	0.9
		2					20	ARS-BFGL-NGS-94742	3266	26	49394472	0.8611	0.246	0.254	0.213	0.287	AA	0.8972	0.0568	1.0215	AA	0.0
			vorm (heta				21	BovineHD0500016054	1076	5	56547209	0.9088	0.213	0.238	0.385	0.164	AA	0.9436	0.0491	0.8238	AA	0.9
						4.5	× 22	BovineHD1900016048	4480	19	56746656	0.8856	0.344	0.197	0.246	0.213	AB	0.9229	0.5090	1.4614	AA	0.9
	able					14,1,853	23	BovineHD2300011340	7078	23	39248351	0.8365	0.311	0.197	0.189	0.303	88	0.8123	0.9351	0.7745	88	0.8
	0-0-01	해소	P0 h 1	ш 🛛 🔳	fx	II Y	· 24	BTA-104251-no-rs	4860	11	74160869	0.8052	0.418	0.221	0.139	0.221	AB	0.8116	0.6812	0.7022	AA	0.7
							25	BTA-19227-no-rs	5764	21	39551024	0.8730	0.369	0.148	0.082	0.402	NC.	0.0746	0.8804	0.4518	AB	0.9
					====		26	BTA-29644-no-rs	3780	1	7405025	0.8951	0.311	0.238	0.221	0.230	88	0.8994	0.9205	0.7619	AA	0.9
_							27	BTA-46482-no-rs	6268	7	61879960	0.7070	0.205	0.443	0.090	0.262	AB	0.6526	0.4886	2.2103	AB	0.6
	Sample ID	Call Rate	Gender	p05 Gm	p50 Gm	p95 Grr	28	BTA-60516-no-rs	5279	25	42189451	0.8964	0.197	0.270	0.336	0.197	56	0.9329	0.9512	0.9330	88	0.8
	1000000000	0.0000000	Uninger	1000	11000	28740	29	BTA-74304-no-rs	4579	5	18075032	0.8849	0.393	0.115	0.109	0.303	AA	0.9222	0.0447	0.9620	AA	0.9
	3999602003	1.0000000	Unknown	1099	11005	20740	A 30	BTA-83844-00-75	1072		60054010	0.9391	0.475	0.131	0.164	0.230	AA III	0.4144	0.0898	0.4002	PID .	0.9
	3999802003	1.00000000	Unknown	1616	15762	38002	31	B1D-002/4/46	2764	6	110055402	0.0428	0.490	0.205	0.139	0.361	10	0.0/54	0.9819	1.0530	500	0.8
	1999002003	0.9500000	Unknown	922	11106	27109	32	BTB-00200047	4074	26	21409429	0.9226	0.238	0.230	0.361	0.369	48	0.7543	0.4339	1.5769	AR	0.7
	1999802003	0.9900000	Unknown	1165	14285	36270	E 34	BTB-01071609	46.74	3	24601506	0.9144	0.262	0.238	0.189	0.307	AB	0.9481	0.4679	1 3357	AB	0.9
	1999802003	1.0000000	Unknown	1162	11120	30427	36	8TB-01086841	1269	1	94882093	0.9260	0.434	0.139	0.172	0.254	44	0.9569	0.0361	0.9422	AB	0.9
	3999802003	1.0000000	Unknown	1325	12620	33792	35	BTB-01512645	1468	3	94212820	0.9148	0.320	0.230	0.246	0.205	AA	0.9484	0.0620	0.6558	AR	0.9
	3999802003	1.0000000	Unknown	1400	15978	33982	37	BTB-01701390	3478	7	34192804	0.8712	0.246	0.221	0.246	0.287	AA	0.9083	0.0587	1.3161	AA	0.9
	3999602003	1.0000000	Unknown	1220	13582	34947	38	BTB-01734642	4577	1	29073969	0.9028	0.303	0.205	0.123	0.369	68	0.8535	0.9181	0.6629	AB	0.9
	3999802003	0.9900000	Unknown	942	10523	19755	39	Hapmap24524-BTA-1	0 3978	9	46351157	0.8414	0.221	0.262	0.164	0.352	AB	0.8675	0.4766	0.0941	AA	0.6
	3999802003	0.9900000	Unknown	1201	14191	36482	40	Hapmap30258-87A-1	41577	5	56661587	0.9245	0.230	0.262	0.221	0.287	AB	0.9175	0.4048	1.2658	AB	0.95
	3999802003	1.0000000	Unknown	1239	13314	29346	41	Hapmap34991-8E510	7276	6	46481458	0.8595	0.295	0.164	0.123	0.418	AB	0.8954	0.6150	0.5514	E8	0.6
	3999802003	1.0000000	Unknown	1375	12273	30144	42	Hapmap38900-BTA-S	2	21	35729224	0.9159	0.262	0.189	0.172	0.377	AB	0.9493	0.4433	1.4750	AA	0.9
	3999802003	0.9600000	Unknown	1154	8918	20488	43	Hapmap40339-81A-1	13160	3	10640386	0.8890	0.270	0.311	0.262	0.156	AB	0.9262	0.4099	1.3216	AB	0.9
	3999802003	0.9900000	Unknown	1239	12715	32457	44	Hapmap41556-8TA-4	8	2	102772529	0.9139	0.279	0.279	0.131	0.311	AB	0.9477	0.4742	1.0829	AA	0.94
	3999602003	1.0000000	Unknown	1365	12729	28794	45	Hapmap42860-BTA-1	7 3960	9	40400556	0.8445	0.320	0.131	0.205	0.344	AA	0.8776	0.0651	1.0537	AB	0.87
	3999802003	1.0000000	Unknown	983	9119	27451	46	Hapmap43580-8TA-4	3 7274	18	4271633	0.8736	0.221	0.197	0.213	0.369	AA	0.9108	0.0326	1.3027	AB	0.91

Genotypes are called for each sample (dot) by their signal intensity (Norm R) and Allele Frequency (Norm Theta) relative to canonical cluster positions (dark shading) for a given SNP marker.

Ref: Balding, A tutorial on statistical methods for population association studies, Nature Reviews Genetics, 2006.

Quality control of data is very important

- Sample QC
- Variant QC
- Population structure

PROTOCOL

Data quality control in genetic case-control association studies

Carl A Anderson^{1,2}, Fredrik H Pettersson¹, Geraldine M Carke¹, Lon R Cardon³, Andrew P Morris¹ & Krina T Zondervan¹

Genetic and Genomic Epidemiology Unit, Welkcome Trust Centre for Human Genetcs, University of Oxford, Oxford, UK. 'Statistical Genetics, Welkcome Trust Sanger Institute, Welkcome Trust Genome Campus, Hinxton, Cambridge, UK. 'GlaxoSmithNine, King of Prussia, Pennsylvania, USA. Correspondence should be addressed to C.A.A. (carl.anderson@sanger.ac.uk) or K.T.Z. (krinaz@well.ox.ac.uk).

Published online 26 August 2010; doi:10.1038/nprot.2010.116

1564 | VOL.5 NO.9 | 2010 | NATURE PROTOCOLS

- 11 -

Hardy-Weinberg equilibrium (HWE) test

- Test whether observed genotype counts are deviated from expectations (Hardy-Weinberg equilibrium)
 - Deviations indicate <u>genotyping error</u>, (non-random mating, genetic drift, natural selection, etc.)

	Phenotype	White-spotted (AA)	Intermediate (Aa)	Little spotting (aa)	Total			
	Number	1469	138	5	1612			
n —	$2 imes \mathrm{obs}(\mathrm{AA}) + \mathrm{obs}(\mathrm{Aa})$ $1469 imes 2 + 138$ 0.054							
<i>p</i> –	$2 imes (\mathrm{obs}(\mathrm{AA}$) + obs(Aa) + obs(a)	$(aa)) = \frac{-1}{2 \times (1469)}$	$\overline{9+138+5)} = 0.8$	004			
q = 1	$q=1-p$ $ ext{Exp(AA)}=p^2n=0.954^2 imes 1612=1467.4$							
= 1	1 - 0.954	$\operatorname{Exp}(\operatorname{Aa}) = 2pqn = 2$	2 imes 0.954 imes 0.046 imes 1	1612 = 141.2				
= (0.046	$\operatorname{Exp}(\operatorname{aa}) = q^2 n = 0.$	$.046^2 \times 1612 = 3.4$					
$\chi^2 = \sum rac{(O-E)^2}{E}$								
	$(1469 - 1467.4)^2$ $(138 - 141.2)^2$ $(5 - 3.4)^2$							
Ref: H	W principal fror	n Wikipedia	- 1467.4	141.2	3.4			

QC using PLINK

- remove SNPs with MAF <0.01 : --maf 0.01
- remove SNPs with missingness rate ≥0.02 (call rate <0.98) : --geno 0.02
- remove SNPs with HWE test P-value <1e-06 : --hwe 1e-06
- remove samples with missingness rate ≥0.05 (call rate <0.95) : --mind 0.05

plink --bfile gwas --maf 0.01 --mind 0.05 --geno 0.02 --hwe 1e-06 --make-bed --out QC/gwas.1

Feature	As summary	As inclusion criteria
Missingness per individual	missing	mind N
Missingness per marker	missing	geno N
Allele frequency	freq	maf N
Hardy-Weinberg equilibrium	hardy	hwe N

https://zzz.bwh.harvard.edu/plink/

Effects of rare and low-frequency variants on height

- 458,927 individuals
- 697 known loci explained 23.3% of height heritability
- New loci explained additional **4.1%**
- Rare variants give an increase of 1-2 cm per allele
 - Nature 2017 Feb

Imputed SNPs : good candidates for replication

The Haplotype Reference Consortium

OVERVIEW PARTICIPATING COHORTS USING THE RESOURCE CONTACT SITE LIST

Overview

Goal The Haplotype Reference Consortium (HRC) will create a large reference panel of human haplotypes by combining together sequencing data from multiple cohorts.

Uses The reference panel will be used for genotype imputation and phasing in other cohorts, typically genome-wide association studies (GWAS), where genotypes are available from genome-wide SNP microarrays.

Benefits By combining together multiple cohorts, the reference panels produced by the project will be as large as possible in terms of both number of haplotypes, and numbers of variants. This will increase the accuracy of the genotype imputation, especially at low-frequency variants, and the number of imputable variants, thus increasing the power of GWAS.

Ancestry Initially, the reference panel will contain haplotypes from individuals with predominantly European ancestry, although the HRC will include the 1000 Genomes Project data. In the future, we envisage the reference panel increasing in size and consisting of samples from a more diverse set of world-wide populations.

Timelines The first release will consist of 64,976 haplotypes at 39,235,157 SNPs, all with an estimated minor allele count of >= 5. The first release will become accessible early summer 2015.

	Run	htt	ps://imputationserver.sph.u	mich.edu/index.html
	Name	optional job name		
	Reference Panel (Details)	HRC r1.1 2016 (GRCh37/hg19)	5	
	Input Files (VCF)	File Upload		
		Select Files		
		Multiple files can be selected by using the	etr) / cmd) or (shiff) keys.	
	Array Build	GRCh37/hg19	2	
		Please note that the final SNP coordinates always match the reference build.		
5	rsq Filter	off	×	
	Phasing	Eagle v2.4 (phased output)	•	
	Population	Other/Mixed	7	
	Mode	Quality Control & Imputation	×	
		AES 256 encryption		
		Imputation Server encrypts all zip files by d unzip programs. Use 7z instead.	efault. Please note that AES encryption does not work with standard	
	I will not attempt to re	-identify or contact research partici	pants.	
	I will report any inadve	ertent data release, security breach (or other data management incident of which I become aw	are.
		🕑 Submit Job		

Spurious associations due to population structure

Genetics of chopstic use

successful-use-of-selected-hand instruments gene' (SUSHI)

Sample 3: Americans + Chinese

 $\chi^2 = 34.2$ $P = 4.9 \times 10^{-9}$

	Use	e of chopsti	opsticks		
Allele	Yes	No	Total		
A1	640	340	980		
A2	400	100	500		
Total	1040	440	1480		

Sample 1: Americans

Sample 2: Chinese $\chi^2 = 0$ P = 1

Allele	Use of chopsticks					
	Yes	No	Total			
A1	320	320	640			
A2	80	80	160			
Total	400	400	800			

Allele	Use of chopsticks					
	Yes	No	Total			
A1	320	20	340			
A2	320	20	340			
Total	640	40	680			

Ref: Taru Tukiainen

Principal component analysis

Objective

- Detect sub-population and any individuals of different ancestry

Tools

smartpca tool of <u>EIGENSOFT</u> software (or using PLINK)

https://www.hsph.harvard.edu/alkes-price/software/

- Solution
 - Check if cases and controls are well overlaid. If not, systematic or technical differences between cases and controls might exist
 - Remove outliers (e.g. >|5σ|) or include 10 or 20 principal components as covariates in GWAS analyses

Genome-wide association study

Patients		<i>SNP1</i> Cases Count of G: 2104 of 4000	<i>SNP2</i> Cases Count of G: 1648 of 4000	SNP Repeat for all SNPs	
		Frequency of G: 52.6%	Frequency of G: 41.2%		
	SC CC GG GC CC GC GC GC CC GC GC GC GC GC				
Controls		Controls Count of G: 2676 of 6000	Controls Count of G: 2532 of 6000		
		Frequency of G: 44.6%	Frequency of G: 42.2%		
	22 22 29 29 29 29 20 20 20 29 29 29 29 20 20 29 29 29 29	P-value: 5.0 · 10 ⁻¹⁵	P-value: 0.33		

Basic association test

H₀: Frequency of 'A1' is *independent* of case/control status.

	A1	A2	
Cases	w	x	
Controls	у	Z	

 $\chi^2 = (O-E)^2/E$

[Pearson' s chi-Square]

Odds Ratio (OR): Odds of Allele occurring in cases to the odds of Allele occurring in controls:

$$\frac{w/x}{y/z} = \frac{wz}{xy}$$

In PLINK, OR > 1 implies A1 is at higher frequency in cases relative to controls.

Note that this is not uniform across all analytical platforms.

Ref: Chris Cotsapas

PLINK software (A to Z)

https://zzz.bwh.harvard.edu/plink/

- Google PLINK
- Quality control
- Data management
 - .ped / .map
- Summary stats
- Population stratification
- Association tests

FA FA	M001 M001	1 2	0 0	0 0	1 1	2 2	A A	A A	G A	G G	A 0	C 0	
••	•												
Family ID Individual ID Paternal ID Maternal ID Sex (1=male; 2=female; other=unknown) Phenotype													
1	rs123	3456	5	0	123	3455	5						
1	rs234	4567	7	0	123	3779	13						

1	rs234567	0	1237793						
1	rs224534	0	-1237697						
1	rs233556	0	1337456						

- Regression, Dominant/Recessive/Trend, Fisher's Exact
- Etc.

Mixed effects model

- Mixed effects model
 - Y = SNP + sex + age + PCs + Kinship + e
- Fixed effects
 - SNP, sex, age, PCs
- Random effects
 - Kinship matrix (due to relatedness)
- Tools
 - Binary (disease): SAIGE, REGENIE
 - Continuous (BMI, blood pressure et al.): BOLT-LMM, REGENIE

Genome-wide significance level

- Multiple-testing (comparisons) problem
 - the problem that arises when many null hypotheses are tested; some significant results are likely even if all the hypotheses are false
- Bonferroni's correction (more stringent method)
 - 0.05 / # of tested variants (usually assuming 1M)
 - -0.05 / 1,000,000 = 5E-08
- False discovery rate (less stringent method)

Phenome-wide analysis (PheWAS)										
	https://phe	web.org/UKB-SAIGE	./							
16:53,821,125 A / Nearest gene: FTO AF: 0.39 View on UCSC, GWAS Catalog, dDSNP	G (rs17817712) Obesity Overweight, obesity and other hyperalimentation Diabetes mellitus [remain] Distin of female breast Essential hypertension	ypertension		Section Sec						
Search"427.21", "Diabetes", etc.				\$403 total codes						
Category	Phenotype	P-value	Effect Size (se)	Number of samples						
endocrine/metabolic	Overweight, obesity and other hyperalimentation	1.9+-23	0 14 (0.014)	10968 / 397993						
endocrine/metabolic	Obesity	7.3+23	0.14 (0.015)	10799 / 397993						
endocrine/metabolic	Type 2 diabetes	9.6+21	0.11 (0.011)	18945 / 388756						
endocrine/metabolic	Diabetes mellitus	1.46-19	0.10 (0.011)	20203 / 388756						
neoplasms	Breast cancer [female]	4.3~8	-0.074 (0.014)	12671 / 388549						
ricoptasms	Breast cancer	7.1t-8	-0.073 (0.013)	12898 / 388549						
circulatory system	Hypertension	7.16-7	0.033 (0.0066)	77977 / 330366						
G	As of 2005	J<2E-0	Ac of 2022	Dipestive system disease Cardiovascular Dipestive system disease Metabolic disease (000 mmune system disease disease						
	AS 01 2005		AS 01 2022	Nervous system 3402						
Complement factor	r H (CFH) gene associated with age-related macular degeneration	Catal • Last • 6,09 • >200 • 434,	Og summary data release on 2 6 publications 0,000 SNPs 351 associations	022-11-08						
			https://www	ebi.ac.uk/gwas						

Summary of GWAS analysis and tools

- Quality control
 - Sample QC: PLINK
 - Variant QC: PLINK
 - Related samples: KING
 - PCA of genetic ancestry: EIGENSTRAT(smartpca)
- Imputation
 - Haplotype Reference Consortium: Michigan Imputation Server
 - TOPMed Imputation Server
- Association analysis
 - Logistic/linear regression (unrelated): PLINK
 - Mixed effects regression (including related): SAIGE, BOLT-LMM, REGENIE
- Visualization
 - QQ plot: CM-PLOT
 - Manhattan plot: CM-PLOT

Summary

- SNP arrays and statistical imputation provide fast and accurate genotyping of about a million of genetic variants
- Sample-level and variant-level quality control is very important to remove technical errors and false positive findings
- GWAS have identified >200,000 variants associated with various human traits/diseases

Post-GWAS analysis

Summary of post-GWAS analysis and tools

- Understanding genetic architecture
 - SNP-based heritability: LDSC, GCTA (if genotype available)
 - Genetic correlation: LDSC (same ancestry), POPCORN or S-LDXR (transancestry)
 - SNP heritability in specific tissues or cells: LDSC-SEG
- Finding causal variants, genes, and pathways
 - Fine-mapping (causal variants): CAVIAR, FINEMAP, PAINTOR, SUSIE
 - eQTL and colocalization analysis (genes): COLOC2
 - Pathway enrichment analysis (pathways or gene sets): MAGMA
 - Identifying individuals at high genetic risk (genotype required) — Polygenic risk score: PRSICE-2, LDPRED, PRS-CS
- Inferring causality between traits

 Mendelian randomization: MR-BASE, TwoSampleMR (R package)

GWAS summary statistics are publicly available

- Detailed GWAS results of all variants
 - SNP(rsID), effect allele, OR or beta, SE, P value, etc.
- GWAS Catalog
 - https://www.ebi.ac.uk/gwas
- GWAS Atlas
 - https://atlas.ctglab.nl
- UK Biobank
 - https://github.com/weizhouUMICH/SAIGE
- Consortium websites
 - CARDIoGRAMpluC4D http://www.cardiogramplusc4d.org/data-downloads
 - Diabetes DIAGRAM Consortium http://diagram-consortium.org/downloads.html

https://www.ebi.ac.uk/gwas/

GWAS Catalog

About EMBL-EBI NIH

Q

GWAS Catalog

The NHGRI-EBI Catalog of published genome-wide association studies

Search the catalog

Examples: breast cancer, rs7329174, Yang, 2q37.1, HBS1L, 6:16000000-25000000

Search

Search the Catalog in a number of ways, including by trait, SNP identifier, study and gene.

Diagram

Explore an interactive visualisation of all SNP-trait associations with genome-wide significance ($p \le 5 \times 10^{-8}$).

🕁 Download

Download a full copy of the GWAS Catalog in spreadsheet format and current and older versions of GWAS diagram in SVG format.

Documentation

Including FAQs, our curation process, training materials related resources and a list of abbreviations.

L Summary statistics

A list of all studies for which summary statistics are available in the Catalog.

iii Ancestry

An introduction to our ancestry curation process.

Summary statistics contain most GWAS results

chrom	pos	snpid	ref	alt	ac	af	num_cases	num_controls	beta	sebeta	Tstat	pval
1	16071	rs541172944	G	А	39.843	5.00E-05	650	399970	-2.62	7.55	-0.046	7.28E-01
1	16280	rs866639523	Т	С	124	0.000155	650	399970	-2.99	4.06	-0.182	4.61E-01
1	49298	rs10399793	Т	С	499790.227	0.623771	650	399970	-0.0468	0.0984	-23.4	6.34E-01
1	54353	rs140052487	С	А	285.302	0.000356	650	399970	-1.22	3.19	-0.12	7.03E-01
1	54564	rs558796213	G	Т	121.776	0.000152	650	399970	-0.224	2.89	-0.0269	9.38E-01
1	54591	rs561234294	А	G	79.153	9.90E-05	650	399970	-2.91	6.75	-0.064	6.66E-01
1	54676	rs2462492	С	Т	321190.055	0.400866	650	399970	0.039	0.0975	16.9	6.89E-01
1	55326	rs3107975	Т	С	6698.62	0.00836	650	399970	-1	0.552	-3.29	6.89E-02

Full information for all the variants (~ several millions)

What can we do with summary statistics?

- Estimate the heritability of traits
- Estimate the genetic correlations among traits
- Test associations between genes and traits
- Infer causality between two traits using MR
- Use for weights of SNPs for disease prediction using polygenic risk score (PRS)
- And more..

of samples

Heritability is explained in part by GWAS hits and all GWAS SNPs Height

100%

Total variance

Heritability (based on twin or family study) All SNP-heritability (variance explained by all SNPs) Variance explained by GW significant SNPs

Heritability of GWAS hits and all GWAS SNPs

Trait or Disease	h ² Pedigree Studies	h ² GWAS Hits ^a	h ² All GWAS SNPs ^b
Type 1 diabetes	0.9 ⁹⁸	0.6 ^{99 ,c}	0.3 ¹²
Type 2 diabetes	0.3-0.6 ¹⁰⁰	$0.05 - 0.10^{34}$	
Obesity (BMI)	0.4-0.6 ^{101,102}	0.01-0.02 ³⁶	0.2^{14}
Crohn's disease	0.6-0.8 ¹⁰³	0.111	0.4^{12}
Ulcerative colitis	0.5 ¹⁰³	0.05 ¹²	
Multiple sclerosis	$0.3 - 0.8^{104}$	0.1^{45}	
Ankylosing spondylitis	>0.90 ¹⁰⁵	0.2 ¹⁰⁶	
Rheumatoid arthritis	0.6 ¹⁰⁷		
Schizophrenia	0.7-0.8 ¹⁰⁸	0.01 ⁷⁹	0.3^{109}
Bipolar disorder	0.6-0.7 ¹⁰⁸	0.02 ⁷⁹	0.4 ¹²
Breast cancer	0.3 ¹¹⁰	0.08^{111}	
Von Willebrand factor	0.66–0.75 ^{112,113}	0.13 ¹¹⁴	0.25 ¹⁴
Height	0.8 ^{115,116}	0.1 ¹³	0.5 ^{13,14}
Bone mineral density	0.6-0.8 ¹¹⁷	0.05 ¹¹⁸	
QT interval	0.37-0.60119,120	0.07 ¹²¹	0.2 ¹⁴
HDL cholesterol	0.5 ¹²²	0.157	
Platelet count	0.8 ¹²³	0.05-0.158	

The American Journal of Human Genetics 90, 7–24, January 13, 2012

Heritability enrichment of specifically expressed genes in tissues and cell types

Significant enrichment in glutamatergic neurons in cortex

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses

Nature Genetics 50, 621-629 (2018)

PRS (Pruning and Thresholding)

$$PRS(P_T) = \sum_{i=1} \mathbb{1}_{\{P_i < P_T\}} \tilde{\beta}_i g_i$$

normalized marginal effect size estimates

P-value threshold

Summary statistics from GWAS (independent SNP list)

	Effect_Allele	beta	se	P-value	
SNP1	A	1.7	0.26	3.11E-11	
SNP2	G	1.3	0.25	9.96E-08	
SNP3	A	-0.7	0.15	1.53E-06	
SNP4	С	-1.2	0.27	4.41E-06	P-value < 1e-0
SNP5	G	1.8	0.82	1.41E-02	
SNP6	Т	0.4	0.41	1.65E-01	
•••					
•••					

Genotype data

SNP1	SNP2	SNP3	SNP4	•••		SNP1	SNP2	SNP3	SNP4	
AT	GG	AC	AA		indiv1	1	2	1	0	
AT	TT	AC	CC		indiv2	1	0	1	2	
AA	GG	AC	AA	–	indiv3	2	2	1	0	
TT	GT	CC	AC		indiv4	0	1	0	1	
AT	TT	AC	AC		indiv5	1	0	1	1	
	SNP1 AT AT AA TT AT	SNP1 SNP2 AT GG AT TT AA GG TT GT AT TT	SNP1SNP2SNP3ATGGACATTTACAAGGACTTGTCCATTTAC	SNP1SNP2SNP3SNP4ATGGACAAATTTACCCAAGGACAATTGTCCACATTTACAC	SNP1 SNP2 SNP3 SNP4 AT GG AC AA AT TT AC CC AA GG AC AA TT GT CC AC AT TT AC AC TT GT CC AC AT TT AC AC	SNP1SNP2SNP3SNP4ATGGACAAATTTACCCAAGGACAATTGTCCACATTTACAC	SNP1SNP2SNP3SNP4Image: SNP1ATGGACAAindiv11ATTTACCCindiv21AAGGACAAindiv32TTGTCCACindiv40ATTTACACindiv51	SNP1 SNP2 SNP3 SNP4 AT GG AC AA indiv1 1 2 AT TT AC CC indiv2 1 0 AA GG AC AA indiv3 2 2 TT GT CC AC indiv3 2 2 AT TT AC AC indiv4 0 1 AT TT AC AC indiv5 1 0	SNP1 SNP2 SNP3 SNP4 AT GG AC AA AT TT AC CC AA GG AC AA TT GT CC indiv1 1 2 1 TT GG AC AA indiv2 1 00 1 TT GT CC AC indiv3 2 2 1 AT TT AC AC indiv4 0 1 0 AT TT AC AC indiv5 1 0 1	SNP1 SNP2 SNP3 SNP4 AT GG AC AA AT TT AC CC AA GG AC AA TT GT CC indiv2 1 0 1 2 TT GT CC AA indiv3 2 2 1 0 AT TT AC AC indiv4 0 1 0 1 AT TT AC AC indiv5 1 0 1 1

of SNPs remaining after LD-clumping

PRS (P+T)

 $PRS(P_T) = \sum_{i=1}^{M} \mathbb{1}_{\{P_i < P_T\}} \tilde{\beta}_i g_i$

normalized marginal effect size estimates

P-value threshold

Summary statistics from GWA	S (independent SNP list)
-----------------------------	--------------------------

	Effect_Allele	beta	se	P-value	
SNP1	А	1.7	0.26	3.11E-11	
SNP2	G	1.3	0.25	9.96E-08	
SNP3	А	-0.7	0.15	1.53E-06	
SNP4	С	-1.2	0.27	4.41E-06	P-value < 1e-05
SNP5	G	1.8	0.82	1.41E-02	
SNP6	Т	0.4	0.41	1.65E-01	
•••					

Genotype data

	SNP1	SNP2	SNP3	SNP4	
indiv1	1	2	1	0	
indiv2	1	0	1	2	
indiv3	2	2	1	0	
indiv4	0	1	0	1	•••
indiv5	1	0	1	1	

	PRS
indiv1	3.6
indiv2	-1.4
indiv3	5.3
indiv4	0.1
indiv5	-0.2

PRS for indiv1

= 3.6

 $= g_1^*\beta_1 + g_2^*\beta_2 + g_3^*\beta_3 + g_4^*\beta_4$ = 1*1.7 + 2*1.3 + 1*(-0.7) + 0*(-1.2)

71

genetics

LETTERS https://doi.org/10.1038/s41588-018-0183-z

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Amit V. Khera^{1,2,3,4,5}, Mark Chaffin^{1,4,5}, Krishna G. Aragam^{1,2,3,4}, Mary E. Haas⁴, Carolina Roselli^{1,4}, Seung Hoan Choi⁴, Pradeep Natarajan^{2,3,4}, Eric S. Lander⁴, Steven A. Lubitz^{2,3,4}, Patrick T. Ellinor^{2,3,4} and Sekar Kathiresan^{1,2,3,4*}

Khera et al. Nat Genet 2018

the right tail of the distribution

Calculating PRS in independent, testing samples

Prevalence of CAD according to the percentile of the GPSCAD.

Martin et al. Nat Genet (2019)

PRS for bipolar disorder across ancestries

PRS for Alzheimer's disease for Koreans

PRS for Alzheimer's disease for Koreans

 B AD dementi APOE ε4 status 	a onset age PRS for AD dementia	No. participants with AD dementia/ total No.	Adjusted HR (95% CI)	Decreased risk of early symptom onset	Increased risk of early symptom onset	<i>P</i> value	P value for trend
Noncarrier	NA	209/414	1 [Reference]	1		NA	
carrier	NA	273/344	1.82 (1.51-2.18)			<.001	
Noncarrier	Low	45/102	1 [Reference]			NA	
	Intermediate	51/104	1.16 (0.78-1.74)	-		.47	
	High	54/108	1.21 (0.81-1.80)		-	.35	< 001
	Very high	59/100	1.71 (1.16-2.53)			.007	<.001
Carrier	Low	50/75	1.51 (1.00-2.27)			.05	
	Intermediate	70/87	2.23 (1.59-3.41)			<.001	
	High	76/93	2.59 (1.78-3.76)			<.001	
	Very high	77/89	2.74 (1.88-4.00)			<.001	
				0	1 3 Adjusted HR (95% CI)	4	

 Not always feasible or ethica to conduct

Lung disease

Lung disease

Which modifiable risks are causally associated with AD?

Modifiable pathways in Alzheimer's disease: Mendelian randomisation analysis Surana Clarson¹³ Matthew Travlor² Bainer Malls³ Martin Dichgan; ³⁴⁴ Stephen Hagh S Markar,² for the COSTINAM Consontum, on behalf of the assumptional reason

Alzheimer's P

to determine which post factors, including socioe

A SSOCIATED WIth Althometrs disease. Inity of DESIGN Mendelian randomisation study using pr

ten. Instrumental variables. University. SETTING International Genomics of Alabemer's Project.

17 008 cases of Alzheimer's disease and 37 154 scoreds.

Odds ratio of Alzheimer's per genetically predicte increase in each modifiable risk factor estimated Merefoliain endomination analysis

This count of the study included analyses of 24 p modifies, see on 5.2 carrier and 8.4 factors. A Bionfertoni motifiable risk factors. A Bionfertoni matter and 8.4 factors and see on the second s

Deserver of evidence for a potential association of evidence for a potential association predicted educational association associated with Alphemiers. The odd were 0.49 (25%, confidence interval)

in log odds of having completed coller The construction in an empleted coller

HAT IS ALREADY KNOWN ON THIS TOP

9/10/20 as allow, the causes of Additionary and logical questions, and reasons minits has depresenting. This has bed to mensioned in modalities and hours, consensued along many modalities that hours, consensued along many another than the advance of the mension of statistical the consense of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mension of the advance of the mension of the mensio

- Modifiable risk factors
 - Selected for the most consistent evidence for an association with Alzheimer's disease in metaanalyses of prospective observational studies
 - 24 socioeconomic, lifestyle/dietary, cardiometabolic, and inflammatory factors were included

Which modifiable risks are causally associated with AD?

Educational attainment, intelligence, and lifestyle and dietary factors

thebmj | BMJ 2017;359:j5375 | doi: 10.1136/bmj.j5375

Cardiometabolic and inflammatory factors

CONCLUSION

These results provide support that higher educational attainment is associated with a reduced risk of Alzheimer's disease.

Does occupational attainment also protect against AD?

ACCEPTED MANUSCRIPT

Genome-wide association study of occupational attainment as a proxy for cognitive reserve

Hyunwoong Ko, Soyeon Kim, Kiwon Kim, Sang-Hyuk Jung, Injeong Shim, Soojin Cha, Hyewon Lee, Beomsu Kim, Joohyun Yoon, Tae Hyon Ha, Seyul Kwak, Jae Myeong Kang, Jun-Young Lee, Jinho Kim, Woong-Yang Park, Kwangsik Nho, Doh Kwan Kim, Woojae Myung 🕿, Hong-Hee Won 🕿

Brain, awab351, https://doi.org/10.1093/brain/awab351 Published: 06 October 2021 Article history ▼

Job Levels	
9. Managers and Senior Officials	52,873
8. Professional Occupations	72,715
7. Associate Professional and Technical Occupations	52,437
6. Administrative and Secretarial Occupation	ns 49,048
5. Skilled Trades Occupations	23,267
4. Personal Service Occupations	18,974
3. Sales and Customer Service Occupations	11,077
2. Process, Plant and Machine Operatives	14,179
1. Elementary Occupations	15,957

UK Biobank (N = 248,847)

SOC-based nine occupational attainment (OA) groups

Genome-wide association analysis of OA

30 significant loci (12 novel variants) SNP-based heritability: 8.5% (s.e. = 0.4%)

Total brain volume was genetically correlated with occupational attainment

Region	rg	s.e.	Р
Total brain volume	0.239	0.045	1.30×10 ⁻⁷
Left insula	0.145	0.038	1.00×10 ⁻⁴
Right inferior temporal	0.210	0.062	6.00×10 ⁻⁴
Right insula	0.133	0.041	1.10×10 ⁻³
Left inferior parietal	0.174	0.055	1.50×10 ⁻³
Left pericalcarine	-0.182	0.058	1.60×10 ⁻³

* ROI= regions of interest (n=33,292) from Zhao et al. Science (2021) https://github.com/BIG-S2/GWAS

MR between occupational attainment and Alzheimer's disease

Method	<i>n</i> SNPs	OR (95% CI)	P
Primary MR for occupational attainment on ris	k of Alzheimers	disease	·
Inverse variance weighted	18	0.78 (0.65 to 0.92)	4.26 × 10 ⁻³
Weighted median		0.73 (0.57 to 0.92)	9.10 × 10 ⁻³
MR-Egger (P for pleiotropy = 0.90)]	0.73 (0.27 to 1.95)	0.54
Sensitivity analysis for occupational attainment	t on risk of Alzhei	mer's disease after the exclu	ision of pleiotropic SNPs
Inverse variance weighted	11	0.72 (0.57 to 0.91)	5.54 × 10 ⁻³
Weighted median		0.72 (0.53 to 0.97)	0.03
MR-Egger (P for pleiotropy = 0.97)		0.70 (0.12 to 4.00)	0.70
Sensitivity analysis for independent effect of controlling for educational attainment	occupational atta	ainment on risk of Alzheime	er's disease by multivariate MR
Sensitivity analysis for independent effect of controlling for educational attainment Exposure: Occupational attainment	occupational atta	ainment on risk of Alzheime	er's disease by multivariate MR
Sensitivity analysis for independent effect of controlling for educational attainment Exposure: Occupational attainment Inverse variance weighted	occupational ette	ainment on risk of Alzheime	er's disease by multivariate MF
Sensitivity analysis for independent effect of controlling for educational attainment Exposure: Occupational attainment Inverse variance weighted Median based	occupational atta	0.72 (0.54 to 0.95) 0.68 (0.48 to 0.97)	0.02 0.04
Sensitivity analysis for independent effect of controlling for educational attainment Exposure: Occupational attainment Inverse variance weighted Median based MR-Egger (P for pleiotropy ^a = 0.21)	occupational atta	0.72 (0.54 to 0.95) 0.68 (0.48 to 0.97) 0.63 (0.45 to 0.89)	0.02 0.04 0.2 × 10 ⁻³
Sensitivity analysis for independent effect of controlling for educational attainment Exposure: Occupational attainment Inverse variance weighted Median based MR-Egger (P for pleiotropy ^a = 0.21) Exposure: Educational attainment	69	0.72 (0.54 to 0.95) 0.68 (0.48 to 0.97) 0.63 (0.45 to 0.89)	0.02 0.04 0.2 × 10 ⁻³
Sensitivity analysis for independent effect of controlling for educational attainment Exposure: Occupational attainment Inverse variance weighted Median based MR-Egger (P for pleiotropy ^a = 0.21) Exposure: Educational attainment Inverse variance weighted	69	0.72 (0.54 to 0.95) 0.68 (0.48 to 0.97) 0.63 (0.45 to 0.89) 1.08 (0.62 to 1.91)	er's disease by multivariate MR 0.02 0.04 8.27 × 10 ⁻³ 0.78
Sensitivity analysis for independent effect of controlling for educational attainment Exposure: Occupational attainment Inverse variance weighted Median based MR-Egger (P for pleiotropy ^a = 0.21) Exposure: Educational attainment Inverse variance weighted Median based	69 69	Imment on risk of Alzheime 0.72 (0.54 to 0.95) 0.68 (0.48 to 0.97) 0.63 (0.45 to 0.89) 1.08 (0.62 to 1.91) 1.10 (0.53 to 2.30)	0.02 0.04 0.78 0.79

Summary of post-GWAS analysis and tools

- Understanding genetic architecture
 - SNP-based heritability: LDSC, GCTA (if genotype available)
 - Genetic correlation: LDSC (same ancestry), POPCORN or S-LDXR (transancestry)
 - SNP heritability in specific tissues or cells: LDSC-SEG
- Finding causal variants, genes, and pathways
 - Fine-mapping (causal variants): CAVIAR, FINEMAP, PAINTOR, SUSIE
 - eQTL and colocalization analysis (genes): COLOC2
 - Pathway enrichment analysis (pathways or gene sets): MAGMA
 - *Identifying individuals at high genetic risk (genotype required)* – Polygenic risk score: PRSICE-2, LDPRED, PRS-CS
- Inferring causality between traits

 Mendelian randomization: MR-BASE, TwoSampleMR (R package)

Summary

- Common variants account for a large portion of heritability
- Post-GWAS analyses use GWAS summary statistics that are publicly available
- Post-GWAS analyses reveal the genetic architecture of human traits
- Omics data with GWAS are helpful in identifying target genes
- However, the current imbalance between ancestries may limit the clinical utility of genomics in non-European populations

감사합니다.

<u>honghee.won@gmail.com</u> 성균관대학교 삼성융합의과학원 삼성서울병원