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본 강의 자료는 한국생명정보학회가 주관하는 BIML 2023 워크샵 온라인 수업을 목적으로 

제작된 것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다.

이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없으며 만약 이러한 사항을 위반할 경우 

발생하는 모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고합니다.



Bioinformatics & Machine Learning (BIML) 
Workshop for Life Scientists, Data Scientists, and Bioinformatians

안녕하십니까?

한국생명정보학회가 개최하는 동계 교육 워크샵인 BIML-2023에 여러분을 초대합니다. 생명정보학 

분야의 연구자들에게 최신 동향의 데이터 분석기술을 이론과 실습을 겸비해 전달하고자 도입한 

전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하여 올해로 9차를 맞이하게 되었습니다. 

지난 2년간은 심각한 코로나 대유행으로 인해 아쉽게도 모든 강의가 온라인으로 진행되어 현장 

강의에서만 가능한 강의자와 수강생 사이에 다양한 소통의 기회가 없음에 대한 아쉬움이 있었

습니다. 다행히도 최근 사회적 거리두기 완화로 현장 강의가 가능해져 올해는 현장 강의를 재개

함으로써 온라인과 현장 강의의 장점을 모두 갖춘 프로그램을 구성할 수 있게 되었습니다.

BIML 워크샵은 전통적으로 크게 인공지능과 생명정보분석 두 개의 분야로 구성되었습니다. 올해 

AI 분야에서는 최근 생명정보 분석에서도 응용이 확대되고 있는 다양한 심층학습(Deep learning) 

기법들에 대한 현장 강의가 진행될 예정이며, 관련하여 심층학습을 이용한 단백질구조예측, 유전체

분석, 신약개발에 대한 이론과 실습 강의가 함께 제공될 예정입니다. 또한 싱글셀오믹스 분석과 

메타유전체분석 현장 강의는 많은 연구자의 연구 수월성 확보에 큰 도움을 줄 것으로 기대하고 

있습니다. 이외에 다양한 생명정보학 분야에 대하여 30개 이상의 온라인 강좌가 개설되어 제공되며 

온라인 강의의 한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 특히 BIML은 각 분야 

국내 최고 전문가들의 강의로 구성되어 해당 분야의 기초부터 최신 연구 동향까지 포함하는 수준 

높은 내용의 강의가 될 것입니다.

이번 BIML-2023을 준비하기까지 너무나 많은 수고를 해주신 BIML-2023 운영위원회의 남진우, 

우현구, 백대현, 정성원, 정인경, 장혜식, 박종은 교수님과 KOBIC 이병욱 박사님께 커다란 감사를 

드립니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 현장 강의와 

온라인 강의를 준비하시는데 노고를 아끼지 않으신 모든 연사분께 깊은 감사를 드립니다. 

2023년 2월

한국생명정보학회장 이 인 석



강의개요

Introduction to genome-wide association studies

전장유전체연관분석(GWAS, genome-wide association studies)은 인간 질병이나 형질과 연관된 유전 

변이를 발굴하고 유전적 조성을 규명하는 대표적인 연구 방법론이다. 그 동안 전세계에서 진행된 대

규모 GWAS 연구들은 다양한 형질과 연관된 유전 변이를 발굴하였고 이러한 변이들은 형질의 유

전력을 상당 부분 설명하게 되었다. 나아가, 대규모 GWAS 분석 결과(GWAS summary statistics)가 

공유됨에 따라, 유전력(heritability), 질병 간 유전적 상관성(genetic correlation), 다인자유전점수

(polygenic risk score), 멘델리안 무작위법(Mendelian randomization) 등 여러 post-GWAS 분석이 

가능하게 되었고 질병의 유전적 조성을 이해하는데 핵심적인 정보를 제공하고 있다.

본 강의에서는 GWAS를 중심으로 한 유전체 분석의 배경, 이론 및 분석 방법론 등을 소개하고, 복

합 질환에서 최근 GWAS 연구 결과를 소개하고자 한다. 이를 통해 GWAS 기반의 연구를 해석하

기 위한 기초 지식을 쌓고, 나아가 GWAS 분석 및 GWAS 결과의 응용 연구를 위한 핵심 역량을 

갖추는 것을 목표로 한다.

강의는 다음의 내용을 포함한다:

  ⚫ 유전체 분석을 위한 개념

  ⚫ GWAS 분석의 이론과 방법론

  ⚫ Post-GWAS 분석의 이론과 방법론

  ⚫ 대표적인 연구 결과의 소개

* 참고강의교재: 

  Tam et al. Benefits and limitations of genome-wide association studies, Nature Reviews 

Genetics, 20:467-484, 2019.

  Balding. A tutorial on statistical methods for population association studies, Nature Reviews 

Genetics, 7:781-791, 2006.

  이종극, 질병 유전체 분석법 3판

* 강의 난이도: 초급

* 강의: 원홍희 교수 (성균관대학교 삼성융합의과학원) 
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Introduction to genome-wide 
association studies

honghee.won@gmail.com

The Human Genome

• Instruction manual for human cells

• A book with 3.2 billion letters 
in 23 chapters or chromosomes

• 20,000 genes, exome (1% of the genome)

• 99.9% identical, 4 million letters are different
– Variation, variant, mutation, polymorphism
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Genetic variation affects phenotype

• Genetic variants
– Pathogenic variants

• Disease-causing, deleterious, damaging
• Usually rare (<1%)
• Often, referred to as “Mutations”

– Neutral variants
• Non-disease causing, but may affect disease susceptibility
• Usually common (>5%)
• Often, referred to as “Polymorphisms”

– SNP (single nucleotide polymorphism)

(and risk for disease)

germline .

• Single nucleotide variants (SNV)
– : 4 /

• Multi-nucleotide variants 
– Small insertions/deletions (indels) : 50 /
– Large copy number variants (CNVs)
– Inversions
– Translocations 
– Aneuploidy

AAATAGCACCGTTAGC
AAATAGCCCCGTTAGC

AAATAGCACCGTTAGC
AAATA-----GTTAGC

SNV indels 
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3
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3

8

Variants by frequency and effect size

- 4 -



9

SNP array

Next-generation sequencing

Variants by frequency and effect size

Int. HapMap Project
(2002-2009)
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1000 Genomes Project
• Sequenced the genomes of 2,504 individuals from 26 

populations in Africa (AFR), East Asia (EAS), Europe (EUR), 
South Asia (SAS), and the Americas (AMR)

A Auton et al. Nature 526, 68-74 (2015) doi:10.1038/nature15393

Variants found to be rare (<0.5%) within the global 

sample but common within a population

3
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Global efforts made for genomic data – biobank

Nature Medicine 26, 29–38 (2020)

Genome-wide
association study 
(GWAS)
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Summary of GWAS analysis and tools
• Quality control

– Sample QC: PLINK
– Variant QC: PLINK
– Related samples: KING
– PCA of genetic ancestry: EIGENSTRAT(smartpca)

• Imputation
– Haplotype Reference Consortium: Michigan Imputation Server
– TOPMed Imputation Server

• Association analysis
– Logistic/linear regression (unrelated): PLINK
– Mixed effects regression (including related): SAIGE, BOLT-LMM, 

REGENIE

• Visualization
– QQ plot: CM-PLOT
– Manhattan plot: CM-PLOT

SNP arrays provide fast and accurate genotyping 
of about a million of genetic variants

Themo Fisher
(Affymetrix)

Illumina
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Illumina genotyping software

Genotypes are called for each sample (dot) by their signal intensity (Norm R) and Allele Frequency (Norm 
Theta) relative to canonical cluster positions (dark shading) for a given SNP marker.

Ref: Balding, A tutorial on statistical methods for population association studies, Nature Reviews Genetics, 2006.
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Ref: Balding, A tutorial on statistical methods for population association studies, Nature Reviews Genetics, 2006.

High linkage disequilibrium (LD) 
• the degree to which alleles at two loci are associated
• correlation between two variants
• r2 =

• D = x11 – p1*q1
• r2 > 0.8 considered “high” and r2 =1 “perfect LD” If two loci are in linkage equilibrium, D=0.

If two loci are in linkage disequilibrium, D>0.

D2

p1*p2*q1*q2

Quality control of data is very important

• Sample QC
• Variant QC
• Population structure

- 10 -



Because clustering is not perfect for many 
reasons…

Failure due to bad samples

Successfully recluster 
on good samples

Failure due to bad samples

Unsuccessfully recluster 
on good samples
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Sample QC

• High batch effects
• Low call rate (<95%)
• Excess of heterozygosity 

(>mean +5sd or <-5sd)
• Sex mismatch (btw. reported 

and estimated)
• Population stratification

(sub-structure)
• (Hidden) familial relationships

Variant QC

• High batch effects
• Low call rate (<98%)
• Hardy-Weinberg 

equilibrium (HWE) 
p<1e-06

• Low minor allele 
frequency (MAF) <1%
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Hardy-Weinberg equilibrium (HWE) test
• Test whether observed genotype counts are deviated 

from expectations (Hardy-Weinberg equilibrium)
– Deviations indicate genotyping error, (non-random mating, 

genetic drift, natural selection, etc.)

Ref: HW principal from Wikipedia

QC using PLINK

• remove SNPs with MAF <0.01 :  --maf 0.01
• remove SNPs with missingness rate �0.02 (call rate <0.98) :  --geno 0.02
• remove SNPs with HWE test P-value <1e-06 : --hwe 1e-06
• remove samples with missingness rate �0.05 (call rate <0.95) :  --mind 0.05

Feature As summary As inclusion criteria

Missingness per individual --missing --mind N

Missingness per marker --missing --geno N

Allele frequency --freq --maf N

Hardy-Weinberg equilibrium --hardy --hwe N

plink --bfile gwas --maf 0.01 --mind 0.05 --geno 0.02 --hwe 1e-06 --make-bed --out QC/gwas.1

https://zzz.bwh.harvard.edu/plink/
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Effects of rare and low-frequency 
variants on height 

• 458,927 individuals

• 697 known loci 
explained 23.3% of 
height heritability

• New loci explained 
additional 4.1%

• Rare variants give an 
increase of 1-2 cm per 
allele

Nature 2017 Feb

Nature Genetics 52, 1169–1177 (2020)

Effects of rare and low-frequency variants on 
coronary artery disease 
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Statistical imputation : more variants
1 of 2 approaches for low-frequency variants:

Imputed SNPs : good candidates for replication
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1000 Genomes based imputation

HapMap Project Reference

0 10 20 30 40

MAF>0.05

MAF<0.05

Number of variants (million)

1000 Genomes HapMap

1000 Genomes Reference

Imputation reference
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https://imputationserver.sph.umich.edu/index.html

TOPMed Imputation server

Built from 97,256 deeply sequenced human 
genomes, this panel contains 308,107,085 
genetic variants
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Quantile
-quantile
plot

Little evidence for
association

Compelling
evidence for
association

Population structure

Population structure
Some evidence

Ref: Nat Rev Genet 

Spurious associations due to population structure

2/12 = 17%
(4% higher 

freq.)

1/8 = 13%

4/8 = 50%
(8% lower 

freq.)

7/12 = 58%

6/20 = 30%
(10% lower 

freq.)

8/20 = 40%

Ref: Nat Rev Genet 
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Genetics of chopstic use
successful-use-of-selected-hand instruments gene’ (SUSHI)

Ref: Taru Tukiainen

Principal component analysis
• Objective

– Detect sub-population and any individuals of different ancestry

• Tools
– smartpca tool of EIGENSOFT software (or using PLINK)

• Solution
– Check if cases and controls are well overlaid. If not, systematic or 

technical differences between cases and controls might exist
– ��������	
������������������������	����������������������������
��

as covariates in GWAS analyses

https://www.hsph.harvard.edu/alkes-price/software/
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PCA 
plot

Principle component analysis

Genome-wide association study

Patients

Controls
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Basic association test

Ref: Chris Cotsapas

Regression anlaysis

Ref: Chris Cotsapas
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PLINK software (A to Z)

• Google PLINK
• Quality control
• Data management

– .ped / .map
• Summary stats
• Population stratification
• Association tests

– Regression, Dominant/Recessive/Trend, Fisher’s Exact
• Etc.

https://zzz.bwh.harvard.edu/plink/

Mixed effects model
• Mixed effects model

– Y = SNP + sex + age + PCs + Kinship + e
• Fixed effects

– SNP, sex, age, PCs
• Random effects

– Kinship matrix (due to relatedness)

• Tools
– Binary (disease): SAIGE, REGENIE
– Continuous (BMI, blood pressure et al.): BOLT-LMM, 

REGENIE
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Genome-wide significance level

• Multiple-testing (comparisons) problem
– the problem that arises when many null hypotheses 

are tested; some significant results are likely even if all 
the hypotheses are false

• Bonferroni’s correction (more stringent method)
– 0.05 / # of tested variants (usually assuming 1M)
– 0.05 / 1,000,000 = 5E-08

• False discovery rate (less stringent method)

Manhattan plot
http://pipoli.com

P<5E-08
Genome-wide significance level
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A high-quality drawing tool designed for 
Manhattan plot of genomic analysis

https://github.com/YinLiLin/CMplot

Circular-Manhattan plot Rectangular-Manhattan plot

Q-Q plot

> install.packages("CMplot")
> library("CMplot")

## Rectangular Manhattan plot
> cmplot(pig60K, type="p", plot.type="m", LOG10=TRUE,
threshold=NULL, file="jpg", memo="", dpi=300, file.output=TRUE,
verbose=TRUE, width=14, height=6, .labels.angle=45)

## QQ plot
> cmplot(pig60K, plot.type="q", box=FALSE, file="jpg",memo="", 
dpi=300, conf.int=TRUE, conf.int.col=NULL, threshold.col="red", 
threshold.lty=2, file.output=TRUE, verbose=TRUE, width=5, 
height=5) 

Regional plot of association

LocusZoom, a visualization tool of GWAS results (http://locuszoom.org/)
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Phenome-wide analysis (PheWAS)
https://pheweb.org/UKB-SAIGE/

GWAS loci at p<5E-8

As of 2005

https://www.ebi.ac.uk/gwas

As of 2022

Catalog summary
• Last data release on 2022-11-08
• 6,096 publications
• >200,000 SNPs
• 434,351 associations
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Number of loci identified increases as a 
function of GWAS sample size

Summary of GWAS analysis and tools
• Quality control

– Sample QC: PLINK
– Variant QC: PLINK
– Related samples: KING
– PCA of genetic ancestry: EIGENSTRAT(smartpca)

• Imputation
– Haplotype Reference Consortium: Michigan Imputation Server
– TOPMed Imputation Server

• Association analysis
– Logistic/linear regression (unrelated): PLINK
– Mixed effects regression (including related): SAIGE, BOLT-LMM, 

REGENIE

• Visualization
– QQ plot: CM-PLOT
– Manhattan plot: CM-PLOT

- 26 -



Summary
• SNP arrays and statistical imputation provide fast and accurate 

genotyping of about a million of genetic variants

• Sample-level and variant-level quality control is very 
important to remove technical errors and false positive 
findings

• GWAS have identified >200,000 variants associated with 
various human traits/diseases

Post-GWAS analysis

- 27 -



Summary of post-GWAS analysis and tools
• Understanding genetic architecture

– SNP-based heritability: LDSC, GCTA (if genotype available)
– Genetic correlation: LDSC (same ancestry), POPCORN or S-LDXR 

(transancestry)
– SNP heritability in specific tissues or cells: LDSC-SEG

• Finding causal variants, genes, and pathways
– Fine-mapping (causal variants): CAVIAR, FINEMAP, PAINTOR, 

SUSIE
– eQTL and colocalization analysis (genes): COLOC2
– Pathway enrichment analysis (pathways or gene sets): MAGMA

• Identifying individuals at high genetic risk (genotype required)
– Polygenic risk score: PRSICE-2, LDPRED, PRS-CS

• Inferring causality between traits
– Mendelian randomization: MR-BASE, TwoSampleMR (R package)

GWAS summary statistics are publicly available

• Detailed GWAS results of all variants
– SNP(rsID), effect allele, OR or beta, SE, P value, etc.

• GWAS Catalog
– https://www.ebi.ac.uk/gwas

• GWAS Atlas
– https://atlas.ctglab.nl

• UK Biobank
– https://github.com/weizhouUMICH/SAIGE

• Consortium websites
– CARDIoGRAMpluC4D

http://www.cardiogramplusc4d.org/data-downloads
– Diabetes DIAGRAM Consortium

http://diagram-consortium.org/downloads.html

GWAS significanceG
All variants

- 28 -



https://www.ebi.ac.uk/gwas/

Summary statistics contain most GWAS 
results

chrom pos snpid ref alt ac af num_cases num_controls beta sebeta Tstat pval
1 16071 rs541172944 G A 39.843 5.00E-05 650 399970 -2.62 7.55 -0.046 7.28E-01
1 16280 rs866639523 T C 124 0.000155 650 399970 -2.99 4.06 -0.182 4.61E-01
1 49298 rs10399793 T C 499790.227 0.623771 650 399970 -0.0468 0.0984 -23.4 6.34E-01
1 54353 rs140052487 C A 285.302 0.000356 650 399970 -1.22 3.19 -0.12 7.03E-01
1 54564 rs558796213 G T 121.776 0.000152 650 399970 -0.224 2.89 -0.0269 9.38E-01
1 54591 rs561234294 A G 79.153 9.90E-05 650 399970 -2.91 6.75 -0.064 6.66E-01
1 54676 rs2462492 C T 321190.055 0.400866 650 399970 0.039 0.0975 16.9 6.89E-01
1 55326 rs3107975 T C 6698.62 0.00836 650 399970 -1 0.552 -3.29 6.89E-02

Full information for all the variants (~ several millions)
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What can we do with summary statistics?

• Estimate the heritability of traits
• Estimate the genetic correlations among traits
• Test associations between genes and traits
• Infer causality between two traits using MR
• Use for weights of SNPs for disease prediction using 

polygenic risk score (PRS)
• And more..

Heritability is explained in part by GWAS 
hits and all GWAS SNPs

Height
100%

80%

Total variance
Heritability (based on twin or family study)
All SNP-heritability (variance explained by all SNPs)
Variance explained by GW significant SNPs

45%

Nat 
Genet
2010

“GCTA”

27%

Nature
2017

711 K
780

3.3 M
12,111

Nature
2022

40%

# of samples
# of GWAS variants

10%
Nature
2010

183 K
180 294,831

Missing
heritability
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Heritability of GWAS hits and all GWAS SNPs

Heritability enrichment of specifically 
expressed genes in tissues and cell types

Nature Genetics 50, 621–629 (2018)

LDSC-SEG in GTEx and 
chromatin data
>> significant enrichment of SCZ 
GWAS signals in brain tissues

Significant enrichment in 
glutamatergic neurons in cortex

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
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Genetic correlation among diseases

Nat Genet. 2015 Nov; 47(11): 1236–1241.

https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation

GTEx (genotype-tissue expression)

https://gtexportal.org/home/

Colocalization of the signals
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FUMA for various post-GWAS analyses
https://fuma.ctglab.nl/tutorial

Review paper: https://www.frontiersin.org/articles/10.3389/fgene.2020.00424/full
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Polygenic risk score: 
high risk if one has many risk variants

• PRS based on GWAS
– Sum of risk allele counts across GWAS variants
– Weighted (effect size) sum of risk allele counts 

across GWAS variants

GWAS significanceG
All variants

Complex
disease/phenotypes

“Polygenicity”

Image Ref: 2014.Genes_ Whiffin and Houlston

PRS (Pruning and Thresholding)

70

P-value threshold

# of SNPs remaining after LD-clumping

normalized marginal effect size estimates

Summary statistics from GWAS (independent SNP list)

Genotype data

P-value < 1e-05 
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PRS (P+T)

71

P-value threshold

# of SNPs remaining after LD-clumping

normalized marginal effect size estimates

Summary statistics from GWAS (independent SNP list)

Genotype data

PRS for indiv1

= g1�!1 + g2�!2 + g3�!3 + g4�!4

= 1*1.7 + 2*1.3 + 1*(-0.7) + 0*(-1.2)

= 3.6

P-value < 1e-05 

Khera et al. Nat Genet 2018
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Polygenic risk score for CAD using 6 million 
variants is normally distributed

The empirical risk of CAD rising sharply in 
the right tail of the distribution
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The genetic prediction accuracy was far lower for 
other populations than for European populations

Fig. 3: Prediction accuracy relative to European-ancestry individuals across 17 quantitative traits and 5 continental 
populations in the UKBB.

Martin et al. Nat Genet (2019)

PRS for bipolar disorder across ancestries

Nature Genetics 53, 817–829 (2021)
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PRS for Alzheimer’s disease for Koreans

PRS for Alzheimer’s disease for Koreans
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https://idatassist.com/why-journalists-love-causation-and-how-statisticians-can-help/

RCT is the gold-standard design to infer 
causality, but 

• Exceedingly expensive and 
time-consuming efforts

• High failure rates (>50% fail 
owing to lack of efficacy)

• Not always feasible or ethical 
to conduct

Participants

Not feasible nor ethical

Random allocation

Smoking Control

Lung disease Lung disease

Compare outcomes
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Analogy between RCT and MR

JAMA Psychiatry 2021;78(6):623-631

Mendelian randomization (MR)
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Mendelian randomization (MR)

Mendelian randomization (MR)
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Two-sample MR

eLife 2018;7:e34408
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Which modifiable risks are causally 
associated with AD?

• Modifiable risk factors
– Selected for the most consistent 

evidence for an association with 
Alzheimer’s disease in meta-
analyses of prospective 
observational studies

– 24 socioeconomic, 
lifestyle/dietary, cardiometabolic, 
and inflammatory factors were 
included

Which modifiable risks are causally 
associated with AD?

Cardiometabolic and inflammatory factorsEducational attainment, intelligence, and lifestyle 
and dietary factors
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Cognitive reserve 

Age-related neuropathology

Co
gn

iti
ve

 fu
nc

tio
n

Incident dementia

High cognitive reserve

Low cognitive reserve

- Educational attainment
- Occupational attainment

Does occupational attainment also protect 
against AD?
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Partitioned heritability was enriched in the 
central nervous system and brain tissues

CNS CNS

Total brain volume was genetically 
correlated with occupational attainment
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Genetic
correlation

MR between occupational attainment and 
Alzheimer’s disease
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Summary of post-GWAS analysis and tools
• Understanding genetic architecture

– SNP-based heritability: LDSC, GCTA (if genotype available)
– Genetic correlation: LDSC (same ancestry), POPCORN or S-LDXR 

(transancestry)
– SNP heritability in specific tissues or cells: LDSC-SEG

• Finding causal variants, genes, and pathways
– Fine-mapping (causal variants): CAVIAR, FINEMAP, PAINTOR, 

SUSIE
– eQTL and colocalization analysis (genes): COLOC2
– Pathway enrichment analysis (pathways or gene sets): MAGMA

• Identifying individuals at high genetic risk (genotype required)
– Polygenic risk score: PRSICE-2, LDPRED, PRS-CS

• Inferring causality between traits
– Mendelian randomization: MR-BASE, TwoSampleMR (R package)

15 years of GWAS discovery

AJHG 110, 1–16, February 2, 2023
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As of June 2021, the vast majority (86%) of 
genomics studies have been conducted in 

individuals of European descent

Summary
• Common variants account for a large portion of heritability

• Post-GWAS analyses use GWAS summary statistics that are 
publicly available

• Post-GWAS analyses reveal the genetic architecture of human 
traits

• Omics data with GWAS are helpful in identifying target genes

• However, the current imbalance between ancestries may limit 
the clinical utility of genomics in non-European populations

- 49 -



.

honghee.won@gmail.com

- 50 -




