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Curriculum Vitae

Speaker Name: Hyunju Lee, Ph.D.

» Personal Info

Name Hyunju Lee
Title Professor
Affiliation Gwangju Institute of Science and Technology

» Contact Information
Address 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005

Email hyunjulee@gist.ac.kr

Phone Number  062-715-2213

Research Interest

Bioinformatics, Machine learning, and Text Mining

Educational Experience

1997 B.S. in Computer Science, KAIST, South Korea
1999 M.A. in Computer Engineering, Seoul National University, South Korea
2006 Ph.D. in Computer Science, University of Southern California, USA

Professional Experience

2006-2007 Post-doc Research Fellow, Brigham and Women's Hospital and

Harvard Medical School, USA

2007- Full-time lecturer, Assistant, Associate, Full Professor, Electrical Engineering and

Computer Science, Gwangju Institute of Science and Technology

Selected Publications (5 maximum)

1.

Yeonghun Lee and Hyunju Lee. Integrative reconstruction of cancer genome karyotypes using

InfoGenomeR. Nature Communications, 12:2467, 2021.

. Ho Jang and Hyunju Lee, Multiresolution correction of GC bias and application to

identification of copy number alterations, Bioinformatics, 35(20), 2019.

. Jeongkyun Kim, Jung-jae Kim, and Hyunju Lee, DigChem: Identification of disease-gene-chemical

relationships from Medline abstracts, PLoS Computational Biology 15(5), 2019.

. Jihee Soh, Hyejin Cho, Chan-Hun Choi, and Hyunju Lee, Identification and Characterization of

MicroRNAs Associated with Somatic Copy Number Alterations in Cancer, Cancers, 10(12):475,
2018.

. Bayarbaatar Amgalan and Hyunju Lee, DEOD: uncovering dominant effects of cancer-driver

genes based on a partial covariance selection method, Bioinformatics, 31(15), 2015.
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Genomic variants

* Protein-coding regions make up around 1% of the human genome

* ENCODE suggests (Nature 489, 57-74 (2012))

82% of the human genome was functionally important having biochemical activity
* ~20 % of the genome is associated with DNase hypersensitivity or transcription

factor binding (common features for identifying regulatory region)

L]
* How coding and noncoding variation can impact gene function
Variant Location Transcript Map Transcript Product Transcript description Potential Outcome
v r\/_/ Synonymous/ Homeostasis/
Coding A
x . b f— e Missense/ Altered Product/
\etandard interpratation) = Nonsense Loss of function
—
———
Promoter/Enhancer/ v {#jﬁ Over/ R
Looping/cis-regulatory IncRNA Pt - — Under expression 2 Xpression patterns
e ,\’ﬁ
f_—/
,_/
Splice Donor/Acceptor .* *. — Skipped exon/ Altered product
Branchpoint 4 f_\/_// Retained intron Nonsense Mediated Decay
Gloss and Dinger Experimental & Molecular Medicine (2018) 5%0:97

Noncoding variants
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* Mutations in noncoding variants can lead to gain or loss of transcription
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Mutations in miRNA l
binding sites
Nature Reviews Genetics volume 17, pages93-108(2016)




Coding vs. noncoding variants

* Prediction of the effect of a coding variant on protein
function
* ‘sorting tolerant from intolerant’ (SIFT) algorithm
* ‘polymorphism phenotyping’ (PolyPhen) tool
* Protein sequences have been highly conserved throughout evolution
* Based on a multiple-sequence alignment

* Regulatory elements
* Conservation is a less important signal when interpreting variants

* Effects of regulatory variants have quantitative rather than qualitative
effects on gene expression

* Same variant may have a larger or smaller effect in different tissues, at
different developmental stages and even in different individuals.

F’;SBI a._}-.‘.,wgigigiﬁ_'}ﬂ Nature Methods volume 11, pages294-296(2014) 5
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Computational methods to prioritize non-
coding variants with functional effects

Method used to build model

CADD
GWAVA
DeepSEA
DanQ
DeFine

DeepFun

OB ERYzE=ms

2014 Support vector machine
2014 Random forest algorithm
2015 Deep learning, CNN
2016 Deep learning, CNN, RNN
2018 Deep learning, CNN
2021 Deep learning, CNN

Machine learning model (GWAVA)

* GWAVA: Genome-wide annotation of variants

* Prioritization of noncoding variants by integrating various genomic and
epigenomic annotations

* https://www.sanger.ac.uk/tool/gwava/

Various
genomic and
epigenomic
information

2e® Bl AHD 24 B 5
AN ik L

)

Modified Binary classification
Random Forest classifier (Disease-implicated SNVs

vs. control SNVs)
(SNVs : single-nucleotide variants)

Nature Methods volume 11, pages294-296(2014) °
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Machine learning model (GWAVA)

* Disease-implicated SNVs

* All variations annotated as ‘regulatory mutations’ from the public release
of the Human Gene Mutation database (HGMD)

* Control sets

* Common (minor allele frequency 21%) SNVs from the 1000
Genomes Project (1KG)

* First set: a random selection of SNVs from across the genome in
order to sample overall background.
* Second set: matched for distance to the nearest TSS genome-wide.

* HGMD variants are not distributed randomly across the genome; 75% lie within
a 2 kilobase (kb) window around an annotated transcription start site (TSS)

* Third set: all 1KG variants in the 1 kb surrounding each of the
HGMD variants.

:SBI SR YB YR Nature Methods volume 11, pages294—-296(2014)

Machine learning model (GWAVA)

* Genomic and epigenomic annotations
* Open chromatin: DNase-seq data from ENCODE

* Transcription factor binding: ChIP-seq peak calls for 124 TFs from
ENCODE

* Histone modifications: ChIP-seq peak calls for 12 modifications from
ENCODE

* RNA polymerase binding: ChIP-seq peak calls from ENCODE
* CpG islands: Predictions from Ensembl

* Genome segmentation: discrete states such as transcription start sites,
gene ends, enhancers, transcriptional regulator CTCF-binding regions
and repressed regions

* Conservation: Genomic evolutionary rate profiling (GERP) scores from
mammalian alignments

* Human variation: Variants and allele frequencies 1000 Genomes
Project phase 1 data

* Genic context: distance from any base annotated as exonic, intronic,
coding sequence, 5’ or 3’ untranslated region, splice site, or start or
stop codon in any transcript

‘”SBl SR AP YL 33| Nature Methods volume 11, pages294—296(2014)
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Machine learning model (GWAVA)

* Genomic and epigenomic annotations

* A large matrix with a row for each variant locus and a
column for each possible annotation.

e The column type depending on the annotation class

(i) the number of cell lines in which the variant locus overlaps
some annotation, such as DNase | hypersensitive sites and
ChlPseq peaks

(ii) a present-absent binary flag

* Ex) whether this region is ever in an annotated intron
(iii) a continuous value for genome-wide annotations

* Ex) conservation and distance to the nearest TSS

A part of example annotations

chr | end start | DNase | E2F1 | H3K27ac |H3K27me3 chn—c:S'a gerp |tss dist| ... TSS |INTRON| STOP U;R
rs111626726 | chr3 | 1.5E+08 | 1.5E+08 | 12 0 12 1 1 | 318 | 447 6 1 o |o
°“’SB| S lE A 53| Nature Methods volume 11, pages294-296(2014)

Machine learning model (GWAVA)

* A modified version of the random forest algorithm

* Three classifiers using all available annotations to discriminate between
the disease variants and variants from each of the three control sets

1.0 1

0.8 4

0.6 1

0.4 4

True positive rate

B Unmatched (AUC = 0.97)
0.2 4 @ TSS (AUC = 0.88)

@ Region (AUC = 0.71)

@ Chance

0 0.2 04 0.6 08 1.0
False positive rate

°“’SB| SR AP YL 33| Nature Methods volume 11, pages294—296(2014)
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Chromosomes are composed of DNA tightly-wound
around histones
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faSBiamdEE s "




Histone and transcription

Nucleosomes

Linker DNA
H1 Linker DNA

Nature Reviews | Genetics

Histone proteins need to be modified and DNA needs to be
released for transcription to take place.

5 CD; SR AND A BB} 15
faoBigRYzEAs

---------------

Epigenetic mechanisms

EPIGENETIC MECHANISMS HEALTH ENDPOINTS
are affi by these fi and pr « Cancer

= Development (in utero, childhcod) = Autcimmune disease

= Er 1 ch = Mental disorders

= Drugs/Pharmaceuticals = Diabetes

= Aging

= Diet EPIGENETIC
@ FcToR

CHROMOSOME CJl))METHYE GBOLE

\
7 \

' DNA methylation

| Methyl group (an epigenetic factor found
in some dietary sources) can tag DNA
| and activate or repress genes. HISTONE TAIL
HISTONE TAIL

DNA ible, gene i

Histone modification
The binding of epi ic 1 to “tails™

Histones are proteins around which | alters the extent to which DNA is wrapped around
DNA can wind for compaction and DNA ir gene inacti histones and the availability of genes in the DNA
gene regulation. to be i o
_C,.SBi I AU A B8] http://commonfund.nih.gov/epigenomics/figure.aspx
o3 ¥orman Society for Bloinformntics




Histone modification DNA methylation

Chromatin structure

NH,

Methyl groups attach N Methyltransferase

to CpG islands regulating *ﬁ ’g

gene expression

H H

( acetylation
- methylation
o 4 Triteta < ubiquination
aa s :“ & @I sumoylation

Decreased or no methylation
in active gene expression

k \‘ H3 tail k IEI phosphorylation
Methylation inhibits
gene expression
2 SBI sty Lss) Nevin C and Carroll M, J Hum Genet Clin Embryol 2015, 15004

Chromatin
Immunoprecipitation

Sample fragmentation
Immunoprecipitation

e Chromatin Immunoprecipitation (ChIP): a technique that \ 7
permits to “freeze” the protein-DNA bonds inside the cell Non-histone ChiP diyr® / O Histone ChiP
nucleus, and the extraction of the DNA bound by a TF ChiP oS [\0/ \&_/ Histone
ore . S A Y
SpeCIflc prOteIn x ! DNA purification ChlP
Lgc rfpaw a;d T T = —
. . .. . adaptor ligation ol ailing
* Antibodies are used to select specific proteins or / | \
nucleosomes which e'nrlches for DNA-fragments that are
bound to these proteins or nucleosomes . g ——— . — e
B i 1 e l
(bridge PCR) {emulsion PCR)
* Selected fragments can be either hybridized to a \‘[’
microarray (ChIP-chip) or sequenced on modern NGS \ /// \
platform (ChIP-seq). Helicos
llumina ingle-molecule
. . ISequen(lng Roche ABI :ecg«,pncmg
* Thus, we can extract DNA bound in vivo by ith everse Pyrosequencing g with eversie
* Modified histones Sequence reads

* Specific transcription factors
* RNA Pol Il

Nature Reviews | Genetics
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Regulation

* Transcription factors (TFs)

- Regulate gene transcription
by binding to specific DNA
elements such as promoters,
enhancers, silencers.

&= SB| ‘}q-)gcn;u k|

Saciaty for ainforrmaties

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141

cobinding ‘m/ j/ tethered

et
“ TF binding
’ scenarios

A
DNA methylation

Promoter
DHS

Distal DHS correla(ed
with promoter DHS

ACTAGTGNAQ: M TGTACC

Motif2
oxﬂ&@mﬂﬂ‘l

Distal DHS
Distal DHS

Disease-associated SNP

DNase |

footprint,
DNase | cleavage

SNP ettt
affecﬂng ACTAGTGCGCATGCGCAATGTACA

A TR

DNA sequence ACTAGTGCG SCGCARTGTACA

R

‘ DNase | Hypersensitive site (DHS) ¥

Disease-associated SNP
‘ . ChiP-seq peak for Histone marks accociated with transcriptional activation

. ChiP-seq peak for transcription factor

® Transcription factor
-

wxen Gene with transcription direction

19

Regulation

* Chromatin accessibility

- Hallmark of regulatory DNA regions

- characterized by DNase |
hypersensitivity (DHS)

- DHSs are regions of chromatin that
are sensitive to cleavage by
the DNase | enzyme.

DNase-Seq analysis
HS HS HS HS
‘ Dhase |
5 = hypersansitive stas
released by \
= %
Ganomic DNA sequance
— -
— = Mappedseq lags
== =

§aoBigRYIR=a

cobinding "@l “/ tethered
B 1
» TF binding
a scenarios

A
DNA methylation

Promoter
DHS

Distal DHS correla(ed
with promoter DHS

ACTAGTGMACC GANDG TGTACC

if:
s M;@’Lr\l Motif2

Distal DHS
Distal DHS,

Disease-associated SNP

DNase |

footprint.
DNase | cleavage

§NP i Popoeries
SCe f‘“\TGTRC}\ affecnng ACTAGTGC SCATGCC CAA’"CTACA

T i /™

A ONase | Hypersensitive site (DHS) 2

DNA sequence
Motif1

AC.Au.u\.

Disease-associated SNP
‘ . ChiP-seq peak for Histone marks accociated with transcriptional activation

/. ChiP-seq peak for transcription factor

® Tanscription factor
L]

wxen Gene with transcription direction

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 20
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DNase | footprinting

* DNase | footprinting detects DNA sequences that are protected from
cleavage by DNasel because they are bound by regulatory factors.

Promoter
DHS
TAGT! 'm'\ec AMIGTGTACC

Distal DHS (on(laud 1A .
with promoter DHS 'l b Motif2

Distal DHS

Distal DHS,;

A DNasel Hypersensitive site (DHS) W Disease-associated SNP

_l__ ChiP-seq peak for Histone marks accociated with transcriptional activation
S:’ Transcription factor

A\ ChiP-seq peak for transcription factor

xexo Gene with transcription divection

F'.;SBI g&g?gigﬂ Genomics Proteomics Bioinformatics 11 (2013) 135-141 21

DNase | footprinting

* DNase | footprinting of K562 cells identifies the individual
nucleotides within the MTPN promoter that are bound by NRF1.

Chr7: 1356620001
— — A TPN

NRF1 ChlP-seq .
(K562 cells)
200 bp —
DNase I-seq l.
(K562 cells)

- -
- -
- -
- e
- e
.- ..

— T PN

(per nucleotide)

20 bp |—|I

Vertebrate
conservation
(phyloP)

DNA sequence ACTAGTGCECAT

CGCAR
NRF1 motif C C &

§aoBigRYIR=a

22
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Noncoding variants and TF binding

nC"‘\"TGmnCC AR T"T ACC

Distal DHS couelaled

with promoter DHs M \ Motif2
Distal DHS arfievealley
Distal DHS
Disease-associated SNP
DNase |
footprint,
DNase | cleavage
................ NP, et
DNAsequence  ACTAGTGCGCAICGCAATGTACA * affecting  ACTAGTGCGCATGCGCAATGTACA
A . A
Motif1 ( ( TEbinding ( ( T{ ( Motif1
A\ el WA
A ONase Hypersensitive site (DHs) #  Disease-assoclated SNP
‘ ChiP-seq peak for Histone marks accociated with transcriptional activation
L. Chip-seq peak for transcription factor 69 Transcription factor
rxn Gene with transcription direction

§a SR ERdeEEs Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 23

ety far Rainfemmntic

Noncoding variants and TF binding

* DNase | footprints mark sites of in vivo protein occupancy.
* Effect of T/C SNV rs4144593 on protein occupancy and chromatin accessibility.

T or C allele-specific DNase | cleavage profiles from ten cell
lines heterozygous for the T/C alleles at rs4144593.

DNase | cleavage profiles from 18 cell lines
homozygous for the C allele at rs4144593 and
one cell line homozygous for the T allele at

rs4144593.
- Cell types heterozygous : :  Cell types homozygous
. T/C SNV rs4144593 :: TorC at SNV rs4144593
1 Chro: 36399995 = 1 Chro: 36399995 B
-~ - Z
:
) ) o ==
g k@)& E % CAGAGAGACAACAGA ‘,_g CAGAGAGCACAACAGA g.
Se@s seoss ;MG - BN T
B “wm E A iomiow oM SSCEin
; 1 Chro: 36399995 = 1 Chro: 36399995 » B
8 5 ;
g 2 g
) o .. S
T £ ‘B
= CAGAGA AACAGA S B CAGAGA tcu GA g

NF1/CTF1 motif NF1/CTF1 motif

P?';SBI EE’@?%?E*:!EI Neph, S. et al. Nature 489, 83-90 (2012) 24
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* Introduction to noncoding variants
* Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods to prioritize noncoding variants
e Convolutional neural network

25

A typical convolutional neural network layer

* Convolution stage

Next Layer .
Convolutional Layer =15 r ] L
Pooling stage
t AN | P | PR
Detector stage:
Nonlinearity
1 PR I i I PR
Convolutional :
stage * Nonlinearity function
» Rectified linear unit (ReLU)
Input Layer °. Tanh, etc.
* Pooling stage
* Max pooling
* Average pooling, etc.
E.‘; SBI a‘_}a.)‘.g?;g tjgs_-liﬂ Goodfellow et al., Deep Learning 26
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LeNet-5 (1998): An example of 2-D convolution

) C3:f. maps 16@10x10
INPUT g&;g:zmsm maps S4: 1. maps 16@5x5
32x32 S2: 1. maps
E@14x14

Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE. 86(11): 2278 - 2324.

a.S T BIR A M B ELE
faop ERgsEEs

|
Full wan ‘ Gaussian connections

27

LeNet-5 (1998): An example of 2-D convolution

—— C3: 1. maps 16@10x10
: feature maps S4: 1. maps 16@5x5
6@28x28 iy

b o I'I_— I"_
r
e

INPUT
32x32

CS:layer g jayer OUTPUT
120 P s 10

|
| Full conhection |Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Average pooling:2*2
INPUT:32*32*3 filter 1:5*5 28*28*6 (stride:2*2)

DN L
stride: 1*1) Hyy | o | Hys | Hua

U || B || g || O 1 Hys e 14*14*6

o | fio | fus | faa | fus —

lsp | Iss | lsa | lss | N TR ER A | 1 »
[ * fier2 S
T s - i
L[] filter 4 = ilig

— | * filter5 [ e e e e

II II II II II II II II I I * fllter 6

§aoBigRYIR=a

28
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* Introduction to noncoding variants
* Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods to prioritize noncoding variants
e Convolutional neural network

* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

1s® | Bl AHDE 2] B 5} 29
FaSBi ERE YL

Sequence-based algorithmic framework
DeepSEA (deep learning—based sequence analyzer)

Output:
variant functionality

. . . . ege . prediction inctional-variant prediction
* Goal: Predict with single-nucleotide sensitivity et 1“’““
Input
the effects of noncoding variants on oo log(aliele Tralle A
2 iu; chromatin 20
transcription factor (TF) binding, DNA Bt z-gE I
1.
accessibility and histone marks of sequences g 1
Compare
1. Simultaneously predict large-scale oHs Trbindng  Histone marks
Output:
2. HH H H predicted allele- Allele T OOOOOOOOOOO
chro.matln profiling d?t-a,- |nclud|n.g TF Becamonan . 50000000000
binding, DNase | sensitivity and histone- it
mark profiles -
Training data: Train
2. Predicting allele-specific chromatin Fosamas Epgonomcs Z{”"””"Féﬁfﬁé’é‘;"“"’“’“
romatin profiles
profile and chromatin effect R
Input
3. Those predictions are used to estimate s PV WS—
. . . (1,000 bp) . . .GOGTGGGTACGCTTAATCGTCAAGCTTTAGCGT. . .
functional effects of noncoding variants Variant poston

s oz aanws Nat Methods. 2015 October; 12(10): 931-934 -,
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Datasets

* Genome-wide chromatin profiles

* From the Encyclopedia of DNA
Elements (ENCODE) and
Roadmap Epigenomics projects

* 690 TF binding profiles for 160
different TFs, 125 DNase |
hypersensitivity (DHS) profiles
and 104 histone mark profiles (a
total of 919 peak sets).
(Supplementary Table 1)

* 521.6 Mbp of the genome (17%)
were found to be bound by at
least one measured TF and were
used as a regulatory information—
rich and challenging set for
training the DeepSEA regulatory
code model

L CpjtRua LRy

] -
(=) e Saciaty for lainfarmatics

136

Genomics Proteomics Bioinformaries 11 (2013) 135-141

Table I Summary of ENCODE experiments

Experiment

Description

DNA methylation

TF ChIP-seq

Histane ChIP-seq

DNase-seq

DNase footprint

MNase-seq
3C-carbon copy (5C)
GWAS SNP targeting

In 82 human cell lines and tissues:

A549. Adrenal gland, AG04449, AG04450. AGD9309. AG09319, AG10803, AoSMC, BE2 C. BJ. Brain, Breast.
Caco-2, CMK, ECC-1. Fibrobl, GM06990. GM 12878, GM12891, GM12892, GM 19239, GM19240, H1-hESC,
HAEpiC, HCF, HCM, HCPEpiC, HCT-116, HEEpiC, HEK 293, HeLa-53, Hepatoeytes, HepG2, HIPEpIC, HL-60,
HMEC, HNPCEpiC, HPAEpiC, HRCEpiC, HRE, HRPEpiC, HSMM. HTR8svn, IMR90, Jurkat. K562, Kidney,
Left Ventricle, Leukocyte, Liver, LNCaP, Lung, MCF-7, Melano. Myometr, NB4, NH-A, NHBE. NHDF-neo, NT2-
D1, Osteoblasts, Ovear-3, PANC-1, Pancreas, Panlslets, Pericardium, PFSK-1, Placenta, PrEC, ProgFib, RPTEC,
SAEC, Skeletal muscle, Skin, SkMC, SK-N-MC, SK-N-SH. Stomach, T-47D. Testis. U87, UCH-1 and Uterus

A total of 119 TFs:

ATF3, BATF, BCLAFI, BCL3. BCL11A, BDP1, BHLHE40, BRCAIL BRFI1, BRF2, CCNT2, CEBPB, CHD2,
CTBP2, CTCF, CTCFL, EBFI, EGRI, ELFI, ELK4, EP300, ESRRA, ESRI, ETSI, E2F1, E2F4, E2F6, FOS,
FOSL1. FOSL2. FOXAL FOXA2. GABPA, GATAL. GATA2. GATA3. GTF2B. GTF2FL. GTF3C2, HDAC2,
HDACS, HMGN3, HNF4A, HNF4G, HSF1, IRF1, IRF3, IRF4, JUN, JUNB, JUND, MAFF, MAFK, MAX,
MEF2A. MEF2C, MXI1. MYC, NANOG. NFE2. NFKBI. NFYA, NFYB. NRFI. NR2C2, NR3Cl. PAXS, PBX3.
POLR2A. POLR3A. POLR3IG. POU2F2, POUSF1, PPARGCIA. PRDMI, RAD2I. RDBP, REST, RFX5, RXRA.
SETDBI. SIN3A, SIRT6. SIX5, SMARCA4, SMARCBI. SMARCCI, SMARCC2, SMC3. SPII. SP1. SP2.
SREBF1. SRF, STATI. STAT2, STAT3, SUZ12, TAFI, TAF7, TALL, TBP, TCFTL2, TCF12, TFAP2A. TFAP2C,
THAPIL, TRIM28, USF1, USF2, WRNIPL, YY1, ZBTBTA, ZBTB33, ZEBI, ZNF143, ZNF263, ZNF274 and ZZZ3
A total of 12 types:

H2A.Z, H3K4mel, H3K4me2, H3K4me3, H3K%ac, H3K9mel, H3KY9me3, H3K27ac, H3K27me3, H3K36me3,
H3K79me2 and H4K20mel

In 125 cell types or treatments:

BISET, A549, AG04449, AGO4450, AGO9309, AG09319, AGIOB03, AoAF, AoSMC/serum_free_media, BE2 C, BI,
Caco-2, CD20, CD34, Chorion, CLL, CMK, Fibrobl, FibroP, Gliobla, GM06990, GM 12864, GM 12865, GM 12878,
GMI12891, GM 12892, GM18507, GM 19238, GM 19239, GM 19240, H7-hESC, HYES, HAc, HAEpIC, HA-h, HA-sp,
HBMEC, HCF, HCFaa, HCM. HConF, HCPEpiC, HCT-116, HEEpiC, HeLa-83, HeLa-83_IFNadh, Hepatocytes,
HepG2, HESC, HFF, HFF-Myc, HGF, HIPEpiC, HL-60, HMEC, HMF, HMVEC-dAd, HMVEC-dBI-Ad,
HMVEC-dBI-Neo. HMVEC-dLy-Ad. HMVEC-dLy-Neo, HMVEC-dNeo, HMVEC-LBIL. HMVEC-LLy.
HNPCEpiC, HPAEC, HPAF, HPDE6-E6E7, HPALF, HPF, HRCEpiC, HRE, HRGEC, HRPEpIiC, HSMM,
HSMMemb, HSMMtube, HTR8svn, Huh-7, Huh-7.5, HUVEC, HVMF, iPS, Ishikawa_Estr, Ishikawa_Tamox,
Jurkat, K562, LNCaP, LNCaP_Andr, MCF-7, MCF-7_Hypox, Medullo, Melano, MonocytesCD 14+, Myometr,
NB4, NH-A, NHDF-Ad. NHDF-neo, NHEK, NHLF, NT2-D1, Osteobl, PANC-1, PanlsletD. Panlslets, pHTE,
PrEC, ProgFib. PrEC, RPTEC, RWPE], SAEC. SKMC, SK-N-MC, SK-N-SH_RA_ Stellate, T-47D, Th. Thl, Th2,
Urothelia, Urothelia_UT189, WERI-Rb-1, WI-38 and WI-38_Tamox

In 41 cell types:

AG10803, AoAF, CD20+, CD34+ Mobilized, [Brain, fHeart, MLung, GM06990, GM 12865, HAEpiC, HA-h, HCF,
HCM. HCPEpIiC, HEEpiC, HepG2. HT-hESC. HFF, HIPEpiC. HMF, HMVEC-dBI-Ad. HMVEC-dBI-Neo.
HMVEC-dLy-Neo, HMVEC-LLy, HPAF, HPALF, HPF, HRCEpiC. HSMM, Thl. HVMF, IMR90. K562, NB4,
NH-A, NHDF-Ad, NHDF-neo, NHLF, SAEC. SkMC and SK-N-SH RA

In GMI12878 and K562

In GMI12878, K562, HeLa-83 and HI-hESC

296 noncoding GWAS SNPs were assigned a target promoter

Nat Methods. 2015 October; 12(10): 931-934 1

Datasets for chromatin profile prediction

* Input

* From 521,6 Mbp sequences (the human GRCh37 reference genome)

e 1,000-bp DNA sequence

* Centered on each 200-bp bin

* 400-bp flanking regions at the two sides for extra contextual information

* One hot encoding

One hot encodin

e Output
¢ 919 chromatin features

* A chromatin feature was labeled 1 if more than half of the 200-bp bin is in the peak region and 0

otherwise.
*  Example:

*  Whether DNase-seq in a cell-line T-47D has a peak in the 200-bp bin
*  Whether TF FOXA1 in a brain cell-line has a peak in the 200-bp bin

o GBj B dz A

arean Society for Bloinformatics

Nat Methods. 2015 October; 12(10): 931-934 _,
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Training and Test sets

e Test: Chromosome 8 and 9

 Validation:

e 4,000 samples on chromosome 7 spanning the genomic
coordinates 30,508,751-35,296,850.

° Hyperpa rameter selection

* Training: Rest of the autosomes

PRSI ANGIZ B

Nat Methods. 2015 October; 12(10): 931-934 .,
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DeepSEA model
configuration

Model Architecture

Convolution layer ( 320 kernels. Window size: 8. Step size:

Pooling layer ( Window size: 4. Step size: 4)

[EnY
—

Convolution layer ( 480 kernels. Window size: 8. Step size: 1)

Pooling layer ( Window size: 4. Step size: 4)

Convolution layer ( 960 kernels. Window size: 8. Step size: 1)

Fully connected layer ( 925 neurons )

Sigmoid output layer

® + & AHOH 2 - F)
¢ SBiERdBERs

sigmoid

Fully connected 925

Fully connected 925

Flatten (960*53)

_ RelU
— 960
960 con.voluilon ((1,000-7)/4-7)/4-7
kernels{480°8 Convolution window size:8

480

((1,000-7)/4-7)/4

pooling window size:4
480

480 convolutien -7)/4-7)
kernels: 320*8

320

(1,000-7)/4
pooIingTNindow size:4

320 RelU
320 convelution
kernels: 4*8 convolution Window size:8

4| input

1 000
150

Nat Methods. 2015 October; 12(10): 931-934 _,
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DeepSEA model
configuration

sigmoid

Fully connected 925
* Training of the DeepSEA model.

objective = NLL + A, ||W |3 + 4, || H ||, Fully connected 925

Flatten (960*53)
olution
1

g80 |

NLL ==Y ¥log(Y/ f; (X*) + (1 = Y)(1 = £(X*))

s !

960 con
kernels:

((1,000-7)/4-7)/4-7

* s:index of training samples
nvolution window size:8

* t:index of chromatin features.
* Y7:0,1 label for sample s, chromatin feature t.
*  fi (X°): the predicted probability output of the model for

layer5

{(L,000-7)/4-7)/4

. . . pooling window size:4  layer4
chromatin feature t given input X5,
480
. . 480 convolution s -7)/4-7)
* Regularization Parameters: kernels: 3208 |
e L2 regularization (A,): 5e-07 320
) {1,000-7)/4

e L1 sparsity (A,): 1e-08

. . layer2
e Dropout proportion (proportion of outputs randomly set to

indow size:4

0): 3207
* Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other 320 conjolution |
layers: 0% kernels:|4* convolution window size:8
A\ \ input o6

-cpinau e Nat Methods. 2015 October; 12(10): 931-934 .
$a 1% s8=%

w0 Saciaty for laintermatics

Regularization

* When model complexity increases, generally bias decreases and variance
increases

¢ Minimize the total error.

a b

A= Total
e %
w
Variance
’ Bias
i 0
Model complexity 0

(b) Polynomial fits to data simulated from a third-order polynomial underlying a model with normally distributed noise.

- Underfitting (gray diagonal line, linear fit), reasonable fitting (black curve, third-order polynomial) and overfitting (dashed curve, fifth-
order polynomial).

(c) Two-class classification (open and solid circles)

- Underfitted (gray diagonal line), reasonable (black curve) and overfitted (dashed curve) decision boundaries.

- The overfit is influenced by an outlier (arrow) and would classify the new point (orange circle) as solid, which would probably be an error.

NATURE METHODS | VOL.13 NO.9 |
SEPTEMBER 2016 | 703 36
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Regularization (L1 norm and L2 norm)

* To reduce its generalization error but not its training error

argmin((Xw — )T (Xw —Y) + Areg(w)) = argmin(J(w) + Areg(w))

L2 regularization L1 sparsity

reg(w)=|lw||3 regw)= | |w]|,

N P Minimizes regularization W’ L1: Encourages sparsity

wy * Squared L2: Encourages small weights
Figure 7.1

Goodfellow, Deep Learning, 2016
SaSB ERdeERas Y

Regularization for Deep Learning

* Dropout
Figure 7.6 9 9 9 O
ofo o&a o’@ ®
° )@ ®E @ @&
® | ®| O
0*0 & Q@
T ® 0 ®E O

vN
Y| °

Ensemble of subnetworks

10
()
oo

Goodfellow, Deep Learning, 2016
aSBi R .
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DeepSEA model configuration

* Training of the DeepSEA model.

objective = NLL + 4, || W | + &, ||[H '),

NLL ==Y ¥log(Y/ f; (X*) + (1 = Y)(1 = £(X*))

s !

* s:index of training samples
* t:index of chromatin features.

* Y7:0,1 label for sample s, chromatin feature t.
*  fi (X°): the predicted probability output of the model for

chromatin feature t given input X5,

* Regularization Parameters:
e L2 regularization (A,): 5e-07
e L1 sparsity (A,): 1e-08

* Dropout proportion (proportion of outputs randomly set

to 0):

* Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other >2° °°"[§'”“°"

layers: 0%

S CD; B2 ANCIZ K 5
§eSBiaauBELas

w0 Saciaty for laintermatics

sigmoid

Fully connected 925

Fully connected 925

Flatten (960*53)

E°'“§j°" ((1,000-7)/4-7)/4-7
- ~ Convolution window size:8  layer5

480

960 con
kernels:

{(T,000-7)/4-7)/4
indow size:4 layerd

480

480 convolutien
kernels: 320*8¢ ~

320

-7)/4-7)

{1,000-7)/4
indow size:4 layer2
320

kernels:|4*

\

4 \ input

\

1 000
+7

Nat Methods. 2015 October; 12(10): 931-934

model.lua

require 'torch'
require 'nn'
require 'cunn’

require 'math’

nfeats =4

width = trainData.data:size(3)
height =1

ninputs = nfeats*width*height

nkernels = {320,480,960}

model = nn.Sequential()

model:add(nn.SpatialConvolutionMM(nkernels[2], nkernels[3], 1, 8, 1, 1, 0):cuda())
model:add(nn.Threshold(0, 1e-6):cuda())

model:add(nn.Dropout(0.5):cuda())

nchannel = math.floor((math.floor((width-7)/4.0)-7)/4.0)-7
model:add(nn.Reshape(nkernels[3]*nchannel))
model:add(nn.Linear(nkernels[3]*nchannel, noutputs))
model:add(nn.Threshold(0, 1e-6):cuda())
model:add(nn.Linear(noutputs , noutputs):cuda())

model:add(nn.Sigmoid():cuda())

print(model)

model:add(nn.SpatialConvolutionMM(nfeats, nkernels[1], 1, 8, 1, 1, 0):cuda())

model:add(nn.Threshold(0, 1le-6):cuda())
model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())

model:add(nn.Dropout(0.2):cuda())

model:add(nn.SpatialConvolutionMM(nkernels[1], nkernels[2], 1, 8, 1, 1, 0):cuda(

model:add(nn.Threshold(0, 1le-6):cuda())
model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())

model:add(nn.Dropout(0.2):cuda())

2e® Bl AHD 24 B 5
§aSBigReTYae

san Sociaty for inirformntics

Nat Methods. 2015 October; 12(10): 931-934
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Chromatin profile prediction performance

a Transcription factors DNase I-hypersensitive sites Histone marks
1.00 1.00
o
H g o4 g o075
. . o ° /4 []
2 2 2
Receiver operating S % 0s0 / = 050
characteristic (ROC) & 3 g
curves g g 025 2 025
0.958 0.923
0 0
T T T T T T T T T T T T T T T
0 025 050 075 1.00 0 025 050 075 1.00 0 025 050 075 1.00
False positive rate False positive rate False positive rate

Performance comparison with gkm-SVM for TF binding site prediction

1.0

1.0{ Z - ! ;: 2 X
" 2 i e Gapped k-mer
B4 . w0 .
g g § 08 ‘ o0 SVM did not
DeepSEA outperformed g8 - o gain performance
i} gz ; . .
k-mer SVM for most TFs. ool 03 from increasing
06 size of context
sequences
04 05
04 06 08 10
gkm-SVM DeepSEA  gkm-SVM  gkm-SVM
(3000p) (1000bp)  (1000bp)  (300bp)

) Nat Methods. 2015 October; 12(10): 931-934
faSBi R h

T
(=

Chromatin effects of single-nucleotide
alteration in noncoding sequence

Output:

variant functionality
prediction Functional-variant prediction
TS TryTe— t * Computational mutation scanning to assess the
gﬁﬁédchmma‘an 0 effect of mutating every base of the input sequence
a * The effect of a base substitution on a specific
Lot chromatin feature prediction

DHS TF binding Histone marks )
grlt‘:gi;:‘;;d allele- weet O@@0 @O0 00@0 PU Pl
T e OOQO0@0 000 log; — logy

1-P, 1-P

Predict t

Training data: Train . . L

ENCODE, s | Deep convolutional network P,: probability predicted for the original sequence

Roadmap Epi iCS | < (DeepSEA) .- .

chvomatin proftes P,: probability predicted for the mutated sequence
Input t

Input:

genomic sequences . . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT. . .

(1,000 bp) . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT . . .
Variant position

) Nat Methods. 2015 October; 12(10): 931-934
faSBi R .
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Chromatin effects of single-nucleotide
alteration in noncoding sequence

2 BN 24 B * Evaluation data

© L ® R - . . . .

- t"@”& ? &i * Allelic imbalance information from digital genomic
B e footprinting (DGF) DNase-seq data on ENCODE cell lines.
1 ——— L~ ———— * Allelic imbalance: one allele is observed in DNase-seq
: T/OSNVrs4144593  :: TorCatSNVrs4144593 data significantly more often than the other allele at a

[ | rowe sseeees g 1 Chvo: 36399995 2 heterozygous site for a single-cell-type sample
© ] . .
g g ‘g * 57,407 allelically imbalanced SNPs from 35 cell types
2 a C St | 0 = (rr = R with DHS predictors
2 NF1/GTE1 meotit S N Erome 5 » 28,918 reference allele—biased variants
‘- lChr936399995 B IChr936399995 S ° 28,489 alternative allele— biased variants
g & 8
3 2 g
= CAGAGASACAACAGA ) CAGAGAGACAACAGA i
- (o (00K £ Ca (00ha :
NF1/CTF1 motif = NF1/CTF1 motif
Neph, S. et al. Nature 489, 83-90 (2012).

-cpinau e Nat Methods. 2015 October; 12(10): 931-934 .

(b)

Performance for predictions for DNase |-
sensitive alleles

Y-axis: predicted prob. that reference allele is
DHS

X-axis: predicted prob. that alternative allele
is DHS

Red dot: experimentally determined

alternative allele-biased variant by DGF data ’ 0 | 02 04 06 08 10 0.5:) o.:)s 0.'10 0,115 o,lzo o,lzs o‘;o o.las olto
Blue dot: experimentally determined Pous (alternative) Margin
reference allele—biased variant by DGF data

Pow s (reference)

(c) Accuracy.

Black lines: the margin, or the threshold of + Blue line: performance for a different cell
predicted probability differences between the type

two alleles for classifying high-confidence * Red line: overall performance on allelically
predictions (margin = 0.07 for this plot). imbalanced variants for all 35 cell types

- cpiaauTEw Nat Methods. 2015 October; 12(10): 931-934 ,,
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Functional SNP prioritization

Probability Output

Boosted logistic
regression classifier

Take absolute value, concatenate, and standardize features (1842 features)

Evolutionary conservation Absolute differencefeatures Relative difference

scores (919 features) features (919 features)
(PhastCons, PhyloP, R
GERP++ neural evolution P(reference) — P (alternative) [ ( )

P(alternative)

and rejected substitution
scores) \><[

1 Predicted chromatin Predicted chromatin

features for features for
reference allele alternative allele

DeepSEA model

!

1000bp flanking genomic sequences with each allele

1
I

Variantinput

) Nat Methods. 2015 October; 12(10): 931-934
$2SBiaReaR v

Data for functional SNP prioritization

e Positive standards

* Human Gene Mutation Database (HGMD) annotated noncoding
regulatory mutations

* Noncoding eQTLs from the GRASP (Genome-Wide Repository of
Associations between SNPs and Phenotypes) database

* Noncoding trait-associated SNPs identified in GWAS studies from the
US National Human Genome Research Institute’s GWAS Catalog

* Negative standards

» Several sets of negative SNPs with different distances to positive
standard SNPs

* Closest 1000 Genomes SNPs in the full set, 25% random subset and 5%
random subset of 1000 Genomes SNPs with minor allele frequency
greater than 0.01.

* More...

) Nat Methods. 2015 October; 12(10): 931-934
2SR gReen=ns °
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Performance of functional SNP prioritization

AUC values for tenfold cross-validation

HGMD regulatory mutation GRASP eQTL (noncoding) GWAS Catalog (noncoding)

(n=2.977) (n=78,613) (n=12,296) ety
n=2, n =78, n=12,
0.70 0.75 0.75 - CADD

0.65 0.70 0.70 e GWAVA (unmatched)
© 0.65 0.65 ~ =~ GWAVA [iss)
2 0.80 e z
. 5, 0.60 0.60 GWAVA (region)

TN = FunSeq2
R 0.55 0.55
0.50 } 0.50 | 0.50
1,200 260 100 Al 31,000 6,300 1,400 360 Al 31,000 6,300 1,400 360
Megative SNP group (bp) MNegative SNP group (bp) MNegative SNP group (bp)

» X axes: average distances of negative-variant groups to a nearest positive variant
* All: randomly selected negative 1000 Genomes SNPs

Nat Methods. 2015 October; 12(10): 931-934

Lairdnrerinties

Contents

* Introduction to noncoding variants
 Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods to prioritize noncoding variants
e Convolutional neural network

* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

* DanQ: a hybrid convolutional and recurrent deep neural network for
guantifying the function of DNA sequences

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107
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Recall) CNN and
sites

CNN predicts the binding affinity of the TALI-GATA1 .

transcription factor complex.

modelling TF binding

a: One-hot encoding of the DNA sequence.
¢ b: First convolutional layer scans the input sequence
using filters, which are exemplified by position weight

a b
Input  Convolution  Activation matrices of the GATA1 and TAL1 transcription factors.
nECE _&I:Q J_«‘:}} ¢ c: Negative values are truncated to 0 using ReLU
activation function.
d . g n « d: In the max pooling operation, contiguous bins of
Global . . . .
" potiieg Convelution Acthation _max conany d the activation map are summarized by taking the
pooling . . .
=o. " maximum value for each channel in each bin.
= ] I | Filters
»Z N
- | ’«?‘} "«Y‘.’\
o - éb il @'Q A
| :__.o‘?«@ & F @ F CATALTALL
B B P
vl- | GATAL TALL
- : TAL1 .
| GATAL ¢ e:The second convolutional layer scans the sequence
u c; | for pairs of motifs and for instances of individual
b LRISE: 'T o motifs.
e | 3 . . . . .
— = [ e f: ReLU activation function is applied.
5 ¢ g: The maximum value across all positions for each
: Negative B Positive channel is selected.
3
Chonnels ¢ h: Afully connected layer is used to make the final

Nature reviews genetics volume 20:389 July 2019

$aSBiRRge R

prediction.

49

DanQ model

Recurrent Dense Multi-task output

Graphical illustration of the DanQ model
Input sequence
- One hot encoded into a 4-row bit matrix.
Convolution layer with rectifier activation
- Acts as a motif scanner across the input matrix
- Produces an output matrix with a row for each convolution
kernel and a column for each position in the input.

r - Max pooling
8 - Reduces the size of the output matrix along the spatial axis,
':'é preserving the number of channels.
= model = Sequential()
§ model.add(Convolution1 D(input_dim=4,
-E input_length=1000,
S nb_filter=320,
filter length=26,
- border mode="valid",
£ activation="relu",
g BANNEN NON BN B 5B subsample_length=1))
g ACA 'I‘ ACTCAH‘CHA‘I‘CT 'I'l' model.add(MaxPooling1 D(pool_length=13, stride=13))

model.add(Dropout(0.2))

L Nucleic Acids Research, 2016, Vol. 44, No. 11 e10750
§aSBi aReEy Rt
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DanQ model

* Graphical illustration of the DanQ model
- BLSTM layer
- Considers the orientations and spatial distances between the
motifs.
- Two fully connected layers
- Adense layer of rectified linear unit
- Sigmoid non-linear transformation to a vector that serves as
probability predictions of the epigenetic marks to be
compared via a loss function to the true target vector.

(1000-25)/13=75

* The rationale for BLSTM layer

- Motifs can follow a regulatory grammar

- invivo spatial arrangements and frequencies of
combinations of motifs,

- Afeature associated with tissue-specific functional

Max pooling |5 Recurrent Dense Multi-task output

5 elements such as enhancers

5

2 forward_Istm = LSTM(input_dim=320, output_dim=320, return_sequences=True)

8 backward_Istm = LSTM(input_dim=320, output_dim=320, return_sequences=True)
brnn = Bidirectional(forward=forward_Istm, backward=backward_Istm, return_sequences=True)
model.add(brnn)

2 model.add(Dropout(0.5))

k model.add(Flatten())

i NENERE L - - model.add(Dense(input_dim=75*640, output_dim=925))

o model.add(Activation('relu'))

=l ACA T ACTCAHCHATCT Tll model.add(Dense(input_dim=925, output_dim=919)) Note (1000_25)/13=75

model.add(Activation('sigmoid'))

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107
SaSBiERE B .
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Performance comparison

* Training, validation and testing sets were downloaded from the DeepSEA website

* Input: reference sequence
* Output:A length 919 binary target vector from 919 ChIP-seq and DNase-seq peak
sets from uniformly processed ENCODE and Roadmap Epigenomics data releases

* A better metric to measure the performance is the area under precision-recall curve

(PR AUC)
* PR AUC metric is less prone to inflation by the class imbalance than the ROC AUC
metric 1S
. GM12878 EBF1 H1-hESC SIX5 L -
— DanQ (AUC=0.291) 13 — DanQ (AUC=0.469) e
0.8} — DeepSEA (AUC=0.187) 1.0 — DeepSEA (AUC=0.287) L %8 x
c — LR (AUC=0.048) c — LR (AUC=0.027) 2 o
5 G 0.8 <o o
u v g o
@ o 09 :
& & o %0 4 f
0.2 02 ”ﬁf
0, .0 0.2 0.4 0.6 0.8 1.0 0'8.0 0.2 0.4 0.6 0.8 1.0 0. 'r
Recall Recall 8002 0z 06 08 Lo

DeepSEA PR AUC

LR models achieve a PR AUC below 5% for the « 97.6% of all DanQ PR AUC scores surpass
two examples DeepSEA PR AUC scores

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107
$aSBi EReEYRAs =

- 26 -




Position frequency matrices, or motifs

* Convert the kernels from the convolution layer of the DanQ models to position
frequency matrices, or motifs.

* Align these motifs to known motifs using the TOMTOM algorithm.

* Of the 320 motifs learned by the DanQQ model, 166 significantly match known motifs
(E<0.01).

A EBF1 TP63 CTCF
E=2.2e-4 E=1.6e-11 E=2.7e-12

] J'CQCQ-&_A l] _.:c’;‘!.'t'_‘__:*:__t_C?T_‘_?__( ] CCJ“GAAG.

] ccc:.—.- II ¢ ”’-.‘[.:*: L3 S ] Cﬁh" Alagicese

* Top: EBF1, TP63 and CTCF motif logos from JASPAR
e Bottom: three convolution kernels

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107
faSBigadTYRa >

Contents

* Introduction to noncoding variants
 Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods to prioritize noncoding variants
e Convolutional neural network

* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

* DanQ: a hybrid convolutional and recurrent deep neural network for
guantifying the function of DNA sequences

* DeepFun: Predicting regulatory variants using a dense epigenomic
mapped CNN model elucidated the molecular basis of trait-tissue
associations

Nucleic Acids Research, 2021, 49(1): 53-66
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Deepkun

* Assess the functional impact of a non-coding variant and its
impact in a tissue- and cell type-specific manner

* Increased epigenetics tracks from ENCODE and Roadmap (6
May 2019)
* 7870 chromatin features

* 1548 DNase | accessibility, 1536 histone mark and 4795
transcription factor binding profiles.

* Removal of technical or biological replicates

* DeepFun incorporates a total of 117 DNase-seq, 360 histone
modification, and 795 TF binding profiles

vs. DeepSea
* Atotal of 919 peak sets (125 DNase | hypersensitivity profiles, 104
histone mark profiles, 690 TF binding profiles for 160 different TFs)

55
Sequence fragment —— Position weight matirx (PWM) oot s o M * One hot encoding sequence
ACT.?‘C.l‘\CTlTGJ‘\;:\l.:-\:‘AC;?lGG/:\T‘GTG.?IG.?Cﬁ.:\GG‘ seat LT oe‘ 1,000 bp sequence
seqn G T ool o R ‘.:Z"Zié - i i
G Tt (ol {1 o obnbnoniaaod * Four-low binary matrix
ACAGACAAACTTGAGTGAAGGGATGCTAC e fefelefefefefle efefe]e]-
é|T|T1T‘ T\’l' |£ |OEEENE ’1 q 1 H ﬂﬂﬂﬂﬂ‘ﬂiﬂquqna
R T B N W 1 3 D T T :
P B il el i s AR ZIFZ * Three-layer CNN architecture
A}E{GACTACAAGTlﬁAGAA‘TGGGlG‘GéAACTT‘AA mnl% ; ! ,:g,‘ : ; > 5 * 300 convolution filters in
1 K NREE <[] HE & 8 a 7 = I 4 2 2 2
S'EqNC‘|71 L_Til_'|||1| AEEN. EE 8 §§§ thelStIaer
THE L W HH wm B zgg R y »:d
| X (Sequence PWMs) ~ Y (accessibility or binding affinity) I %(chrnm!“n”:m::mﬂmmmé e 2"and3 laye rs were
operated on the output of
the prior layer
* Two fully connected neural
network layers with 30%
dropout rate
e A fully connected sigmoid
transformation layer
* Predicting activity (accessibility or
binding affinity) probability
«oCpjsRuea=ss Nucleic Acids Research, 2021, 49(1): 53-66 o0
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Performances

* Random selection of 80%, 10%, and
the remaining 10% for training,
validation, and for testing.

* A median AUC of 0.933 over all DNase-
seq assays

* A median AUC at 0.80 for all TFs assays,
ranging from 0.64 (ZC3H11A) to 0.98
(SP4)

AUC

Nucleic Acids Research, 2021, 49(1): 53-66

Prioritizing regulatory variants

* SNP Activity Difference (SAD) Application to non-coding

* Alt — Ref variants in ClinVar database

* Ref: predicted activity probability
for the reference allele/original
sequence (ranging 0~ 1)

» Alt: predicted activity probability for
the alternative allele/mutated
sequence (ranging 0 ~ 1)

* Variants with a higher positive SAD :
alternative allele increases the
epigenetic signal compared to the
reference allele

 Variants with a negative SAD value: 0.00
decrease the epigenetic signal S &

o
o
w

o
o
(¥

0.014

Average SAD across all features

. Nucleic Acids Research, 2021, 49(1): 53-66
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Top 15 chromatin features

Prioritizing regulatory variants

Prioritize non-coding causal variants in a tissue specific fashion.

Top 15 chromatin features related for three non-coding variants

Cystic fibrosis: rs1554398510

DNase-seq: tonguo

DNase-seq: stromal_cell_of_bone_mamow
DNase-seq: skeletal_muscle_myoblast
DNase-seq: skeletal_muscle_cell

DNase-seq: muscle_of_trunk

DNase-seq: heart_right_ventricie

DNase-seq: foreskin_fibroblast

DNase-seq: fibroblast_of_the_aortic_adventitia
DNase-seq: fibroblast_of_peridontal_ligament
DNase-seq. fibroblast_of_mammary_gland
DNase-seq: fibroblast_of_gingiva

DNase-seq: fibroblast_of_dermis

DNase-seq: eye

DNase-seq: cardiac_muscle_cell

DNase-seq: brain

S . S—
000 001 002 003

SAD

MODY: rs886037620

Coronary artery disease: rs1024611

H3Kdme2-human =c-9«—i Hak27ac-human: muscio_o!_log | [
Hakamez-human: 7c-3+ [ TGN ONase-seq: testis{ [  NGNG_G_G
Hakamoz-human: McF-7< | NG DNase-seq: right_lung
HaKéme2-human: HepG2 _ DNase-seq: muscle_of trunk 4 =
H3Kd4me1-human: stomach 4 _ DNase-seq: muscle_of_back _
Hakamat-human: McF-7{ [ onase-seq: ung | [ NG
H3Kdme 1-human: body_of_pancreas | DNase-seq: fet_tura{ [
DNase-seq: transverse_colon{ DNase-seq: hindimb_musc'e { || NG
DNase-s0q: renal_cortical_opithelial_celld DNaso=seqheart_sight_ventric'o | [
DNase-seq: Peyer's_patch 4 DNase-seq: heart_left_ventricie
DNase-seq: epithelial_cell_of_prostate { DNase-seq: fibroblast_of_skin_of_abdomen
DNasa-seq epithatial_cell_of_esophagus { [ N NNNREGN DNase-seq: fibroblast_of_puimonary_artery{ [ | R
DNase-seq: bronchial_opithelial_cell 4 — DNase-seq: eyo _
DNase-seq: body_of_pancreas | [ NG DNase-seq: cardiac_muscle_cel{ || NNGNGE
000 005 010 0.5 000 002 004 006
SAD SAD

rs1554398510, especially in fibroblast of dermis.

Cystic fibrosis: Most fibroblast tissues related DNase-seq profiles were associated with

Maturity-onset diabetes of the young (MODY ): Both DNase-seq and H3K4me1 profiles in

pancreas tissue had strong association with rs886037620.

muscle tissue

Nucleic Acids Research, 2021, 49(1): 53-66

Coronary atery disease: The impact of rs1024611 was the strongest in heart and cardiac

59

Prioritizing regulatory variants

Autism de novo mutations from Simons
Simplex Collection (SSC) cohort

* 2600 simplex families

* Each family has one child affected by
ASD and unaffected parents and

siblings.

All non-coding variants are grouped into
unaffected and affected siblings.

Consider the average SAD scores of the
non-coding variants over all brain tissues.

With increasing SAD thresholds

* The percentage of variants in patient
siblings increases

* The percentage in health siblings

decreases.

Percentage

100%

75% o

SSC

. Autism
B contal

50% 4

25% 4

0% A

R

SAD threshold (brain feature)
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Summary

* Noncoding variants

e Computational methods to prioritize noncoding variants based on
genomic and epigenomic information
*  GWAVA: Genome-wide annotation of variants

* Deep learning methods based on genomic sequence
* DeepSea
* DanQ
* DeepFun

* |f you are interested, see studies in related topics.

* DeepC: predicting 3D genome folding using megabase-scale transfer
learning (Nature Methods 17:1118-1124(2020))

* Predicting 3D genome folding from DNA sequence with Akita (Nature
Methods 17:1111-1117(2020))
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