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본 강의 자료는 한국생명정보학회가 주관하는 BIML 2023 워크샵 온라인 수업을 목적으로 

제작된 것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다.

이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없으며 만약 이러한 사항을 위반할 경우 

발생하는 모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고합니다.



Bioinformatics & Machine Learning (BIML) 
Workshop for Life Scientists, Data Scientists, and Bioinformatians

안녕하십니까?

한국생명정보학회가 개최하는 동계 교육 워크샵인 BIML-2023에 여러분을 초대합니다. 생명정보학 

분야의 연구자들에게 최신 동향의 데이터 분석기술을 이론과 실습을 겸비해 전달하고자 도입한 

전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하여 올해로 9차를 맞이하게 되었습니다. 

지난 2년간은 심각한 코로나 대유행으로 인해 아쉽게도 모든 강의가 온라인으로 진행되어 현장 

강의에서만 가능한 강의자와 수강생 사이에 다양한 소통의 기회가 없음에 대한 아쉬움이 있었

습니다. 다행히도 최근 사회적 거리두기 완화로 현장 강의가 가능해져 올해는 현장 강의를 재개

함으로써 온라인과 현장 강의의 장점을 모두 갖춘 프로그램을 구성할 수 있게 되었습니다.

BIML 워크샵은 전통적으로 크게 인공지능과 생명정보분석 두 개의 분야로 구성되었습니다. 올해 

AI 분야에서는 최근 생명정보 분석에서도 응용이 확대되고 있는 다양한 심층학습(Deep learning) 

기법들에 대한 현장 강의가 진행될 예정이며, 관련하여 심층학습을 이용한 단백질구조예측, 유전체

분석, 신약개발에 대한 이론과 실습 강의가 함께 제공될 예정입니다. 또한 싱글셀오믹스 분석과 

메타유전체분석 현장 강의는 많은 연구자의 연구 수월성 확보에 큰 도움을 줄 것으로 기대하고 

있습니다. 이외에 다양한 생명정보학 분야에 대하여 30개 이상의 온라인 강좌가 개설되어 제공되며 

온라인 강의의 한계를 극복하기 위해서 실시간 Q&A 세션 또한 마련했습니다. 특히 BIML은 각 분야 

국내 최고 전문가들의 강의로 구성되어 해당 분야의 기초부터 최신 연구 동향까지 포함하는 수준 

높은 내용의 강의가 될 것입니다.

이번 BIML-2023을 준비하기까지 너무나 많은 수고를 해주신 BIML-2023 운영위원회의 남진우, 

우현구, 백대현, 정성원, 정인경, 장혜식, 박종은 교수님과 KOBIC 이병욱 박사님께 커다란 감사를 

드립니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 현장 강의와 

온라인 강의를 준비하시는데 노고를 아끼지 않으신 모든 연사분께 깊은 감사를 드립니다. 

2023년 2월

한국생명정보학회장 이 인 석



강의개요

Noncoding variants and deep learning

악성종양 등의 복합 질환 환자의 DNA를 시퀀싱을 했을 때, 넌코딩 영역에서 많은 변이 

(noncoding variant)가 관찰되고 있다. Noncoding variants가 유전자의 발현이나 질병의 진행에 미

치는 영향에 대한 연구는 질병을 이해하고, 이를 치료하기 위한 타겟을 선정하는데 중요하다. 최

근에는 DNA 시퀀스에 기반하여 noncoding variant의 기능적 영향을 예측하기 위한 다양한 딥 러

닝에 기반 방법론들이 개발되고 있다.

본 강의에서는 noncoding variant의 기능적 영향을 예측하기 위한 딥 러닝 방법론들을 소개하고, 

이러한 방법론을 환자의 DNA 시퀀스에 적용하여, 질병 관련된 유전자들을 발굴한 연구들을 살펴

본다. 본 강의를 통해서 DNA 시퀀스에 적용된 딥 러닝 기반 방법론들과 이를 생물학 지식으로 

변환하는 연구들을 이해하는 것을 목표로 한다. 

  ⚫ Noncoding variants의 개요

  ⚫ 딥 러닝 방법론의 DNA 시퀀스 적용 

  ⚫ Noncoding variants의 기능적 영향 예측

  ⚫ 질병 관련 변이 예측 연구

* 강의 난이도: 중급

* 강의: 이현주 교수 (광주과학기술원 전기전자컴퓨터공학부)
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Genomic variants 

• Protein-coding regions make up around 1% of the human genome  
• ENCODE suggests (Nature 489, 57–74 (2012)) 

•  82% of the human genome was functionally important having biochemical activity. 
• ~20 % of the genome is associated with DNase hypersensitivity or transcription 

factor binding (common features for identifying regulatory region)  

• How coding and noncoding variation can impact gene function 

Gloss and Dinger Experimental & Molecular Medicine (2018) 50:97 3 

Noncoding variants 
• Mutations in noncoding variants can lead to gain or loss of transcription 

Nature Reviews Genetics volume 17, pages93–108(2016) 4 
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Coding vs. noncoding variants 

• Prediction of the effect of a coding variant on protein 
function  

• ‘sorting tolerant from intolerant’ (SIFT) algorithm 
• ‘polymorphism phenotyping’ (PolyPhen) tool 
• Protein sequences have been highly conserved throughout evolution 
• Based on a multiple-sequence alignment  

 
• Regulatory elements  

• Conservation is a less important signal when interpreting variants 
• Effects of regulatory variants have quantitative rather than qualitative 

effects on gene expression 
• Same variant may have a larger or smaller effect in different tissues, at 

different developmental stages and even in different individuals. 

Nature Methods volume 11, pages294–296(2014) 5 

Contents 

• Introduction to noncoding variants 
• Computational methods to prioritize noncoding variants 
• Genomic and epigenomic information 
• Deep learning methods to prioritize noncoding variants 
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Computational methods to prioritize non-
coding variants with functional effects 

Tool Year Method used to build model 

CADD 2014 Support vector machine 

GWAVA 2014 Random forest algorithm  

DeepSEA 2015 Deep learning, CNN 

DanQ 2016 Deep learning, CNN, RNN 

DeFine 2018 Deep learning, CNN 

DeepFun 2021 Deep learning, CNN 

7 

Machine learning model (GWAVA) 

• GWAVA: Genome-wide annotation of variants 
• Prioritization of noncoding variants by integrating various genomic and 

epigenomic annotations 
• https://www.sanger.ac.uk/tool/gwava/ 

 

 

Nature Methods volume 11, pages294–296(2014) 

Various 
genomic and 
epigenomic 
information 

Modified  
Random Forest classifier 

Binary classification  
(Disease-implicated SNVs 
vs. control SNVs) 

(SNVs : single-nucleotide variants) 

8 
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Machine learning model (GWAVA) 

• Disease-implicated SNVs  
• All variations annotated as ‘regulatory mutations’ from the public release 

of the Human Gene Mutation database (HGMD) 

• Control sets 
• Common (minor allele frequency ≥1%) SNVs from the 1000 

Genomes Project (1KG) 
 

• First set: a random selection of SNVs from across the genome in 
order to sample overall background.  

• Second set: matched for distance to the nearest TSS genome-wide.  
• HGMD variants are not distributed randomly across the genome; 75% lie within 

a 2 kilobase (kb) window around an annotated transcription start site (TSS) 

• Third set: all 1KG variants in the 1 kb surrounding each of the 
HGMD variants.  

Nature Methods volume 11, pages294–296(2014) 9 

Machine learning model (GWAVA) 

Nature Methods volume 11, pages294–296(2014) 

• Genomic and epigenomic annotations 
• Open chromatin: DNase-seq data from ENCODE 
• Transcription factor binding: ChIP-seq peak calls for 124 TFs from 

ENCODE 
• Histone modifications: ChIP-seq peak calls for 12 modifications from 

ENCODE 
• RNA polymerase binding: ChIP-seq peak calls from ENCODE 
• CpG islands: Predictions from Ensembl 
• Genome segmentation: discrete states such as transcription start sites, 

gene ends, enhancers, transcriptional regulator CTCF-binding regions 
and repressed regions 

• Conservation: Genomic evolutionary rate profiling (GERP) scores from 
mammalian alignments 

• Human variation: Variants and allele frequencies 1000 Genomes 
Project phase 1 data 

• Genic context: distance from any base annotated as exonic, intronic, 
coding sequence, 5ʹ or 3ʹ untranslated region, splice site, or start or 
stop codon in any transcript 

 

10 
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Machine learning model (GWAVA) 

Nature Methods volume 11, pages294–296(2014) 

• Genomic and epigenomic annotations 
• A large matrix with a row for each variant locus and a 

column for each possible annotation.  
• The column type depending on the annotation class  

(i) the number of cell lines in which the variant locus overlaps 
some annotation, such as DNase I hypersensitive sites and 
ChIPseq peaks  
(ii) a present-absent binary flag   

• Ex) whether this region is ever in an annotated intron   
(iii) a continuous value for genome-wide annotations 

• Ex) conservation and distance to the nearest TSS 

chr end start DNase E2F1 H3K27ac H3K27me3 cpg_isla
nd gerp tss_dist … TSS INTRON STOP UTR

3

rs111626726 chr3 1.5E+08 1.5E+08 12 0 12 1 1 3.18 447 … 6 1 0 0

A part of example annotations 

11 

Machine learning model (GWAVA) 

• A modified version of the random forest algorithm  

• Three classifiers using all available annotations to discriminate between 
the disease variants and variants from each of the three control sets 

Nature Methods volume 11, pages294–296(2014) 12 
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Chromosomes are composed of DNA tightly-wound 
around histones 

© 2013 Nature Education Adapted 
from Pierce, Benjamin. Genetics: A 
Conceptual Approach, 2nd ed.  
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Histone and transcription 

Histone proteins need to be modified and DNA needs to be 
released for transcription to take place. 

15 

Epigenetic mechanisms 

http://commonfund.nih.gov/epigenomics/figure.aspx  16 
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Histone modification 

Chromatin structure  

Nevin C and Carroll M, J Hum Genet Clin Embryol 2015, 1: 004 

DNA methylation 

17 

Chromatin 
Immunoprecipitation 

• Chromatin Immunoprecipitation (ChIP): a technique that 
permits to “freeze” the protein-DNA bonds inside the cell 
nucleus, and the extraction of the DNA bound by a 
specific protein 

 

• Antibodies are used to select specific proteins or 
nucleosomes which enriches for DNA-fragments that are 
bound to these proteins or nucleosomes  

 

• Selected fragments can be either hybridized to a 
microarray (ChIP-chip) or sequenced on modern NGS 
platform (ChIP-seq).  

• Thus, we can extract DNA bound in vivo by 
• Modified histones 
• Specific transcription factors 
• RNA Pol II 

TF ChIP Histone 
ChIP 

18 
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Regulation 

• Transcription factors (TFs)  
- Regulate gene transcription 

by binding to specific DNA 
elements such as promoters, 
enhancers, silencers. 

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 

• Chromatin accessibility 
- Hallmark of regulatory DNA regions  
- characterized by DNase I 

hypersensitivity (DHS) 
- DHSs are regions of chromatin that 

are sensitive to cleavage by 
the DNase I enzyme. 

Regulation 

- 10 -



• DNase I footprinting detects DNA sequences that are protected from 
cleavage by DNaseI because they are bound by regulatory factors. 

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 

DNase I footprinting  

21 

• DNase I footprinting of K562 cells identifies the individual 
nucleotides within the MTPN promoter that are bound by NRF1. 

DNase I footprinting  

22 

- 11 -



Noncoding variants and TF binding 

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 23 

• DNase I footprints mark sites of in vivo protein occupancy.  
• Effect of T/C SNV rs4144593 on protein occupancy and chromatin accessibility.  

T or C allele-specific DNase I cleavage profiles from ten cell 
lines heterozygous for the T/C alleles at rs4144593. 

DNase I cleavage profiles from 18 cell lines 
homozygous for the C allele at rs4144593 and 
one cell line homozygous for the T allele at 
rs4144593.  

Neph, S. et al. Nature 489, 83–90 (2012) 

Noncoding variants and TF binding 

24 
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• Introduction to noncoding variants 
• Computational methods to prioritize noncoding variants 
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• Convolutional neural network 

25 

A typical convolutional neural network layer 

• Convolution stage 

• Pooling stage 
• Max pooling 
• Average pooling, etc. 

• Nonlinearity function 
• Rectified linear unit (ReLU) 
• Tanh, etc. 

Goodfellow et al., Deep Learning 

Pooling stage 

Detector stage: 
Nonlinearity 

Convolutional 
stage 

Convolutional Layer 

Input Layer 

Next Layer 

26 
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LeNet-5 (1998): An example of 2-D convolution 

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document 
recognition. Proceedings of the IEEE. 86(11): 2278 - 2324. 

27 
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f11 f12 f13 f14 f15 

f21 f22 f23 f24 f25 

f31 f32 f33 f34 f35 

f41 f42 f43 f44 f45 

f51 f52 f53 f54 f55 

INPUT:32*32*3 

* 

 filter 1:5*5 
(stride: 1*1) 

= 

filter 2 * 
filter 3 * 
filter 4 * 
filter 5 * 

= 
= 
= 
= 

28*28*6 

filter 6 * = 
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Average pooling:2*2 
(stride:2*2) 
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14*14*6 

LeNet-5 (1998): An example of 2-D convolution 

28 
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• Genomic and epigenomic information 
• Deep learning methods to prioritize noncoding variants 

• Convolutional neural network 
• DeepSea: Predicting effects of noncoding variants with deep learning–

based sequence model 

29 

Sequence-based algorithmic framework  
DeepSEA (deep learning–based sequence analyzer) 

• Goal: Predict with single-nucleotide sensitivity 
the effects of noncoding variants on 
transcription factor (TF) binding, DNA 
accessibility and histone marks of sequences 

1. Simultaneously predict large-scale 
chromatin-profiling data, including TF 
binding, DNase I sensitivity and histone-
mark profiles 

2. Predicting allele-specific chromatin 
profile and chromatin effect 

3. Those predictions are used to estimate 
functional effects of noncoding variants 
 

Nat Methods. 2015 October; 12(10): 931–934 30 
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Datasets 

• Genome-wide chromatin profiles  
• From the Encyclopedia of DNA 

Elements (ENCODE) and 
Roadmap Epigenomics projects 

• 690 TF binding profiles for 160 
different TFs, 125 DNase I 
hypersensitivity (DHS) profiles 
and 104 histone mark profiles (a 
total of 919 peak sets). 
(Supplementary Table 1) 

• 521.6 Mbp of the genome (17%) 
were found to be bound by at 
least one measured TF and were 
used as a regulatory information–
rich and challenging set for 
training the DeepSEA regulatory 
code model 

Nat Methods. 2015 October; 12(10): 931–934 31 

Datasets for chromatin profile prediction  

• Input  
• From 521,6 Mbp sequences (the human GRCh37 reference genome) 
• 1,000-bp DNA sequence  

• Centered on each 200-bp bin 
• 400-bp flanking regions at the two sides for extra contextual information 

• One hot encoding 
 
 
 
 

• Output  
• 919 chromatin features  
• A chromatin feature was labeled 1 if more than half of the 200-bp bin is in the peak region and 0 

otherwise. 
• Example:  

• Whether DNase-seq in a cell-line T-47D has a peak in the 200-bp bin  
• Whether TF FOXA1 in a brain cell-line has a peak in the 200-bp bin  

 

 

Nat Methods. 2015 October; 12(10): 931–934 32 
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Training and Test sets 

• Test: Chromosome 8 and 9 
• Validation:  

• 4,000 samples on chromosome 7 spanning the genomic 
coordinates 30,508,751–35,296,850.  

• Hyperparameter selection 

• Training: Rest of the autosomes 

Nat Methods. 2015 October; 12(10): 931–934 33 

DeepSEA model 
configuration 

• Model Architecture 

1. Convolution layer ( 320 kernels. Window size: 8. Step size: 1)  

2. Pooling layer ( Window size: 4. Step size: 4)  

3. Convolution layer ( 480 kernels. Window size: 8. Step size: 1)  

4. Pooling layer ( Window size: 4. Step size: 4)  

5. Convolution layer ( 960 kernels. Window size: 8. Step size: 1)  

6. Fully connected layer ( 925 neurons )  

7. Sigmoid output layer  

input 4 
1,000 

1,000-7 
320 

convolution window size:8 

(1,000-7)/4 
pooling window size:4 

320 

((1,000-7)/4-7)/4 
pooling window size:4 

480 

((1,000-7)/4-7) 

convolution window size:8 

480 

((1,000-7)/4-7)/4-7 
Convolution window size:8 

960 

Flatten (960*53) 
= 

Fully connected 925 

Fully connected 925 

sigmoid 

320 convolution 
kernels: 4*8 

ReLU 

480 convolution 
kernels: 320*8 

ReLU 

960 convolution 
kernels: 480*8 

ReLU 

ReLU 

Nat Methods. 2015 October; 12(10): 931–934 34 
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DeepSEA model 
configuration 
• Training of the DeepSEA model.  

 

 

 

 

 

 

 

• Regularization Parameters:  
• L2 regularization (�1): e-07  
• L1 sparsity (�2): e-08  
• Dropout proportion (proportion of outputs randomly set to 

0):  
• Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other 

layers: 0%  

• s : index of training samples  
• t : index of chromatin features.  
• : 0,1 label for sample s, chromatin feature t.  
• ( ): the predicted probability output of the model for 

chromatin feature t given input .  

input 4 
1,000 

1,000-7 
320 

convolution window size:8 

(1,000-7)/4 
pooling window size:4 

320 

((1,000-7)/4-7)/4 
pooling window size:4 

480 

((1,000-7)/4-7) 

convolution window size:8 

480 

((1,000-7)/4-7)/4-7 
Convolution window size:8 

960 

Flatten (960*53) 
= 

Fully connected 925 

Fully connected 925 

sigmoid 

320 convolution 
kernels: 4*8 

ReLU 

480 convolution 
kernels: 320*8 

ReLU 

960 convolution 
kernels: 480*8 

ReLU 

ReLU 

layer2 

layer4 

layer5 

35 Nat Methods. 2015 October; 12(10): 931–934 

Regularization 

• When model complexity increases, generally bias decreases and variance 
increases 

• Minimize the total error. 

(b) Polynomial fits to data simulated from a third-order polynomial underlying a model with normally distributed noise.     
- Underfitting (gray diagonal line, linear fit), reasonable fitting (black curve, third-order polynomial) and overfitting (dashed curve, fifth-

order polynomial).  
(c) Two-class classification (open and solid circles)  
- Underfitted (gray diagonal line), reasonable (black curve) and overfitted (dashed curve) decision boundaries.  
- The overfit is influenced by an outlier (arrow) and would classify the new point (orange circle) as solid, which would probably be an error. 

NATURE METHODS | VOL.13 NO.9 | 
SEPTEMBER 2016 | 703 36 
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* 

 

Regularization (L1 norm and L2 norm) 

• To reduce its generalization error but not its training error 

L2 regularization  

Minimizes data term 

Minimizes combination 

L1 sparsity  

Minimizes regularization • L1: Encourages sparsity 
• Squared L2: Encourages small weights 

Goodfellow, Deep Learning, 2016 

�reg( )) = �reg( )) 

reg( )=  reg( )= || ||1 

37 

Regularization for Deep Learning 

• Dropout 

Goodfellow, Deep Learning, 2016 38 

- 19 -



DeepSEA model configuration 

• Training of the DeepSEA model.  

 

 

 

 

 

 
 

• Regularization Parameters:  
• L2 regularization (�1): e-07  
• L1 sparsity (�2): e-08  
• Dropout proportion (proportion of outputs randomly set 

to 0):  
• Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other 

layers: 0%  

• s : index of training samples  
• t : index of chromatin features.  
• : 0,1 label for sample s, chromatin feature t.  
• ( ): the predicted probability output of the model for 

chromatin feature t given input .  

input 4 
1,000 

1,000-7 

320 

convolution window size:8 

(1,000-7)/4 
pooling window size:4 

320 

((1,000-7)/4-7)/4 
pooling window size:4 

480 

((1,000-7)/4-7) 

convolution window size:8 

480 

((1,000-7)/4-7)/4-7 
Convolution window size:8 

960 

Flatten (960*53) 
= 

Fully connected 925 

Fully connected 925 

sigmoid 

320 convolution 
kernels: 4*8 

ReLU 

480 convolution 
kernels: 320*8 

ReLU 

960 convolution 
kernels: 480*8 

ReLU 

ReLU 

layer2 

layer4 

layer5 

39 Nat Methods. 2015 October; 12(10): 931–934 

require 'torch' 

require 'nn' 

require 'cunn'  

require 'math' 

 
 
nfeats = 4 

width = trainData.data:size(3) 

height = 1 

ninputs = nfeats*width*height 

nkernels = {320,480,960} 

 
 
model = nn.Sequential() 

 
model:add(nn.SpatialConvolutionMM(nfeats, nkernels[1], 1, 8, 1, 1, 0):cuda()) 

model:add(nn.Threshold(0, 1e-6):cuda()) 

model:add(nn.SpatialMaxPooling(1,4,1,4):cuda()) 

model:add(nn.Dropout(0.2):cuda()) 

 
model:add(nn.SpatialConvolutionMM(nkernels[1], nkernels[2], 1, 8, 1, 1, 0):cuda(
)) 

model:add(nn.Threshold(0, 1e-6):cuda()) 

model:add(nn.SpatialMaxPooling(1,4,1,4):cuda()) 

model:add(nn.Dropout(0.2):cuda()) 

 

 
model:add(nn.SpatialConvolutionMM(nkernels[2], nkernels[3], 1, 8, 1, 1, 0):cuda()) 

model:add(nn.Threshold(0, 1e-6):cuda()) 

model:add(nn.Dropout(0.5):cuda()) 

 
nchannel = math.floor((math.floor((width-7)/4.0)-7)/4.0)-7 

model:add(nn.Reshape(nkernels[3]*nchannel)) 

model:add(nn.Linear(nkernels[3]*nchannel, noutputs)) 

model:add(nn.Threshold(0, 1e-6):cuda()) 

model:add(nn.Linear(noutputs , noutputs):cuda()) 

model:add(nn.Sigmoid():cuda())    

 
print(model) 

 

model.lua 

40 Nat Methods. 2015 October; 12(10): 931–934 
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Chromatin profile prediction performance 

Receiver operating 
characteristic (ROC) 
curves 

0.958 0.923 0.856 

Performance comparison with gkm-SVM for TF binding site prediction 

DeepSEA outperformed 

k-mer SVM for most TFs. 

Gapped k-mer 

SVM did not 

gain performance 

from increasing 

size of context 

sequences 

41 Nat Methods. 2015 October; 12(10): 931–934 

Chromatin effects of single-nucleotide 
alteration in noncoding sequence 

• Computational mutation scanning to assess the 

effect of mutating every base of the input sequence  

• The effect of a base substitution on a specific 

chromatin feature prediction  

P0: probability predicted for the original sequence  

P1: probability predicted for the mutated sequence 

42 Nat Methods. 2015 October; 12(10): 931–934 
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• Evaluation data 
• Allelic imbalance information from digital genomic 

footprinting (DGF) DNase-seq data on ENCODE cell lines.  
• Allelic imbalance: one allele is observed in DNase-seq 

data significantly more often than the other allele at a 
heterozygous site for a single-cell-type sample 

• 57,407 allelically imbalanced SNPs from 35 cell types 
with DHS predictors 

• 28,918 reference allele–biased variants  
• 28,489 alternative allele– biased variants 

Neph, S. et al. Nature 489, 83–90 (2012). 

Chromatin effects of single-nucleotide 
alteration in noncoding sequence 

43 Nat Methods. 2015 October; 12(10): 931–934 

Performance for predictions for DNase I–
sensitive alleles 

(c) Accuracy.  
• Blue line: performance for a different cell 

type 
• Red line: overall performance on allelically 

imbalanced variants for all 35 cell types 

44 Nat Methods. 2015 October; 12(10): 931–934 

(b)  
• Y-axis: predicted prob. that reference allele is 

DHS 
• X-axis: predicted prob. that alternative allele 

is DHS 
• Red dot: experimentally determined 

alternative allele–biased variant by DGF data 
• Blue dot: experimentally determined 

reference allele–biased variant by DGF data 
 

• Black lines: the margin, or the threshold of 
predicted probability differences between the 
two alleles for classifying high-confidence 
predictions (margin = 0.07 for this plot).  
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Functional SNP prioritization 

45 Nat Methods. 2015 October; 12(10): 931–934 

Data for functional SNP prioritization 

• Positive standards 
• Human Gene Mutation Database (HGMD) annotated noncoding 

regulatory mutations  
• Noncoding eQTLs from the GRASP (Genome-Wide Repository of 

Associations between SNPs and Phenotypes) database 
• Noncoding trait-associated SNPs identified in GWAS studies from the 

US National Human Genome Research Institute’s GWAS Catalog 
• Negative standards  

• Several sets of negative SNPs with different distances to positive 
standard SNPs 

• Closest 1000 Genomes SNPs in the full set, 25% random subset and 5% 
random subset of 1000 Genomes SNPs with minor allele frequency 
greater than 0.01.  

• More…  

46 Nat Methods. 2015 October; 12(10): 931–934 
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Performance of functional SNP prioritization 

AUC values for tenfold cross-validation  

• x axes: average distances of negative-variant groups to a nearest positive variant  
• All: randomly selected negative 1000 Genomes SNPs 

47 Nat Methods. 2015 October; 12(10): 931–934 

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107 

Contents 

• Introduction to noncoding variants 
• Computational methods to prioritize noncoding variants 
• Genomic and epigenomic information 
• Deep learning methods to prioritize noncoding variants 

• Convolutional neural network 
• DeepSea: Predicting effects of noncoding variants with deep learning–

based sequence model 
• DanQ: a hybrid convolutional and recurrent deep neural network for 

quantifying the function of DNA sequences 

48 
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Recall) CNN and modelling TF binding 
sites 

• a: One-hot encoding of the DNA sequence.  
• b: First convolutional layer scans the input sequence 

using filters, which are exemplified by position weight 
matrices of the GATA1 and TAL1 transcription factors.  

• c: Negative values are truncated to 0 using ReLU 
activation function.  

• d: In the max pooling operation, contiguous bins of 
the activation map are summarized by taking the 
maximum value for each channel in each bin.  
 
 
 
 
 

• e: The second convolutional layer scans the sequence 
for pairs of motifs and for instances of individual 
motifs.  

• f: ReLU activation function is applied.  
• g: The maximum value across all positions for each 

channel is selected.  
• h: A fully connected layer is used to make the final 

prediction. Nature reviews genetics volume 20:389 July 2019  

• CNN predicts the binding affinity of the TAL1–GATA1 
transcription factor complex.  

49 

model = Sequential() 

model.add(Convolution1D(input_dim=4, 

                        input_length=1000, 

                        nb_filter=320, 

                        filter_length=26, 

                        border_mode="valid", 

                        activation="relu", 

                        subsample_length=1)) 

• Graphical illustration of the DanQ model  
- Input sequence  

- One hot encoded into a 4-row bit matrix.  
- Convolution layer with rectifier activation  

- Acts as a motif scanner across the input matrix  
- Produces an output matrix with a row for each convolution 

kernel and a column for each position in the input.  
- Max pooling 

- Reduces the size of the output matrix along the spatial axis, 
preserving the number of channels. 

model.add(MaxPooling1D(pool_length=13, stride=13)) 

model.add(Dropout(0.2)) 

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107 

DanQ model 

50 

- 25 -



• Graphical illustration of the DanQ model  
- BLSTM layer 

- Considers the orientations and spatial distances between the 
motifs.  

- Two fully connected layers 
- A dense layer of rectified linear unit 
- Sigmoid non-linear transformation to a vector that serves as 

probability predictions of the epigenetic marks to be 
compared via a loss function to the true target vector. 

- Motifs can follow a regulatory grammar  
- in vivo spatial arrangements and frequencies of 

combinations of motifs,  
- A feature associated with tissue-specific functional 

elements such as enhancers 

• The rationale for BLSTM layer 

forward_lstm = LSTM(input_dim=320, output_dim=320, return_sequences=True) 
backward_lstm = LSTM(input_dim=320, output_dim=320, return_sequences=True) 
brnn = Bidirectional(forward=forward_lstm, backward=backward_lstm, return_sequences=True) 

model.add(brnn) 
model.add(Dropout(0.5)) 
model.add(Flatten()) 
model.add(Dense(input_dim=75*640, output_dim=925)) 
model.add(Activation('relu')) 
model.add(Dense(input_dim=925, output_dim=919)) 
model.add(Activation('sigmoid')) 

Note (1000-25)/13=75 

(1000-25)/13=75 

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107 
51 

DanQ model 

Performance comparison 

• A better metric to measure the performance is the area under precision-recall curve 

(PR AUC) 

• PR AUC metric is less prone to inflation by the class imbalance than the ROC AUC 

metric is 

• LR models achieve a PR AUC below 5% for the 

two examples 

• 97.6% of all DanQ PR AUC scores surpass 

DeepSEA PR AUC scores 

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107 
52 

• Training, validation and testing sets were downloaded from the DeepSEA website 

• Input: reference sequence 

• Output:A length 919 binary target vector from 919 ChIP-seq and DNase-seq peak 

sets from uniformly processed ENCODE and Roadmap Epigenomics data releases 
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Position frequency matrices, or motifs 

• Convert the kernels from the convolution layer of the DanQ models to position 

frequency matrices, or motifs.  

• Align these motifs to known motifs using the TOMTOM algorithm.  

• Of the 320 motifs learned by the DanQ model, 166 significantly match known motifs 

(E < 0.01). 

• Top: EBF1, TP63 and CTCF motif logos from JASPAR 

• Bottom: three convolution kernels  

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107 
53 

Nucleic Acids Research, 2021, 49(1): 53-66 

Contents 

• Introduction to noncoding variants 
• Computational methods to prioritize noncoding variants 
• Genomic and epigenomic information 
• Deep learning methods to prioritize noncoding variants 

• Convolutional neural network 
• DeepSea: Predicting effects of noncoding variants with deep learning–

based sequence model 
• DanQ: a hybrid convolutional and recurrent deep neural network for 

quantifying the function of DNA sequences 
• DeepFun: Predicting regulatory variants using a dense epigenomic 

mapped CNN model elucidated the molecular basis of trait-tissue 
associations 

54 
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• Assess the functional impact of a non-coding variant and its 
impact in a tissue- and cell type-specific manner 

• Increased epigenetics tracks from ENCODE and Roadmap (6 
May 2019) 

• 7870 chromatin features 
• 1548 DNase I accessibility, 1536 histone mark and 4795 

transcription factor binding profiles.  
• Removal of technical or biological replicates  

• DeepFun incorporates a total of 117 DNase-seq, 360 histone 
modification, and 795 TF binding profiles 

 

55 

DeepFun 

vs. DeepSea  
• A total of 919 peak sets (125 DNase I hypersensitivity profiles, 104 

histone mark profiles, 690 TF binding profiles for 160 different TFs) 

CNN model 

56 

• Three-layer CNN architecture 
• 300 convolution filters in 

the 1st layer 
• 2nd and 3rd layers were 

operated on the output of 
the prior layer 

• A fully connected sigmoid 
transformation layer 

• Predicting activity (accessibility or 
binding affinity) probability 

• Two fully connected neural 
network layers with 30% 
dropout rate 

• One hot encoding sequence 
• 1,000 bp sequence 
• Four-low binary matrix 

Nucleic Acids Research, 2021, 49(1): 53-66 
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Performances 

• Random selection of  80%, 10%, and 
the remaining 10% for training, 
validation, and for testing. 

• A median AUC of 0.933 over all DNase-
seq assays 

• A median AUC at 0.80 for all TFs assays, 
ranging from 0.64 (ZC3H11A) to 0.98 
(SP4) 

57 Nucleic Acids Research, 2021, 49(1): 53-66 

Prioritizing regulatory variants 

• SNP Activity Difference (SAD) 
• Alt – Ref 
• Ref: predicted activity probability 

for the reference allele/original 
sequence (ranging 0 ~ 1)  

• Alt: predicted activity probability for 
the alternative allele/mutated 
sequence (ranging 0 ~ 1)  

• Variants with a higher positive SAD : 
alternative allele increases the 
epigenetic signal compared to the 
reference allele  

• Variants with a negative SAD value: 
decrease the epigenetic signal 

58 

Application to non-coding 
variants in ClinVar database 

Nucleic Acids Research, 2021, 49(1): 53-66 
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• Cystic fibrosis: Most fibroblast tissues related DNase-seq profiles were associated with 
rs1554398510, especially in fibroblast of dermis.  

• Maturity-onset diabetes of the young (MODY ): Both DNase-seq and H3K4me1 profiles in 
pancreas tissue had strong association with rs886037620. 

• Coronary atery disease: The impact of rs1024611 was the strongest in heart and cardiac 
muscle tissue  

59 

Prioritizing regulatory variants 

• Top 15 chromatin features related for three non-coding variants  

• Prioritize non-coding causal variants in a tissue specific fashion. 

Nucleic Acids Research, 2021, 49(1): 53-66 

Prioritizing regulatory variants 
• Autism de novo mutations from Simons 

Simplex Collection (SSC) cohort 
• 2600 simplex families 
• Each family has one child affected by 

ASD and unaffected parents and 
siblings. 

• All non-coding variants are grouped into 
unaffected and affected siblings.  

• Consider the average SAD scores of the 
non-coding variants over all brain tissues. 

• With increasing SAD thresholds 
• The percentage of variants in patient 

siblings increases 
• The percentage in health siblings 

decreases. 

60 
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Summary 

• Noncoding variants 
• Computational methods to prioritize noncoding variants based on 

genomic and epigenomic information 
• GWAVA: Genome-wide annotation of variants 

• Deep learning methods based on genomic sequence 
• DeepSea 
• DanQ 
• DeepFun 

• If you are interested, see studies in related topics. 
• DeepC: predicting 3D genome folding using megabase-scale transfer 

learning (Nature Methods 17:1118–1124(2020)) 
• Predicting 3D genome folding from DNA sequence with Akita (Nature 

Methods 17:1111–1117(2020)) 
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